资源描述:
《《第24章圆》复习课.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第24章圆知识体系复习第1部分圆的基本性质第2部分与圆有关的位置关系本章安排复习内容第3部分正多边形和圆第4部分弧长和面积的计算第5部分有关作图本章知识结构图圆的基本性质圆圆的对称性弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系正多边形和圆有关圆的计算点和圆的位置关系切线直线和圆的位置关系三角形的外接圆三角形内切圆等分圆圆和圆的位置关系弧长扇形的面积圆锥的侧面积和全面积一.圆的基本概念:1.圆的定义:到定点的距离等于定长的点的集合叫做圆.2.有关概念:(1)弦、直径(圆中最长的弦)(2)弧、优弧、劣弧、等弧
2、.O二.圆的基本性质1.圆的对称性:(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴.(2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即圆具有旋转不变性..2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.∵CD是圆O的直径,CD⊥AB于P∴AP=BP,︵AC︵BC=︵AD︵BD=辅助线关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。弦心距、半径、弦的一半构成直角三角形,从而将问题转化为直角三角形的问题。3.同圆或等圆中圆心角、弧、弦之间的关系:(1)
3、在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.ABDCO∵∠COD=∠AOB︵AB︵CD=∴AB=CD4.圆周角:定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.圆周角性质1:在同一个圆中,同弧所对的圆周角等于它所对的圆心角的一半.∠BAC=∠BOC12在同圆或等圆中,同弧或等弧所对的圆周角相等.相等的圆周角所对的弧相等.圆周角性质2:∠D=∠E=∠C圆周角性质3:半圆或直径所
4、对的圆周角都相等,都等于900.圆周角性质4:900的圆周角所对的弦是圆的直径.∵AB是⊙O的直径∴∠ACB=900∴AB是⊙O的直径∵∠ACB=900(2)点在圆上(3)点在圆外(1)点在圆内...1.点和圆的位置关系.ACB如果规定点与圆心的距离为d,圆的半径为r,则d与r的大小关系为:点与圆的位置关系d与r的关系点在圆内点在圆上点在圆外d<rd=rd>r三.与圆有关的位置关系:.O.Ol(1)当直线与圆相离时d>r;(2)当直线与圆相切时d=r;(3)当直线与圆相交时d<r.直线与圆位置关系的识别:∟drl∟dr.Ol∟d
5、r设圆的半径为r,圆心到直线的距离为d,则:切线的判定方法1.与圆有一个公共点的直线。2.圆心到直线的距离等于圆的半径的直线是圆的切线。3.经过半径的外端且垂直于这条半径的直线是圆的切线。.OA∟l∵OA是半径,OA⊥l∴直线l是⊙O的切线.切线的性质定理:圆的切线垂直于经过切点的半径..OA∟l∴OA⊥l∵直线l是⊙O的切线,切点为A切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹角。BAPO...∵PA、PB为⊙O的切线∴PA=PB,∠APO=∠BPO经过三角形的三个顶点的圆叫做三角
6、形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形不在同一直线上的三点确定一个圆.O..C.B.A三角形的外接圆与内切圆:三角形的外心就是三角形各边垂直平分线的交点..OABC三角形的内心就是三角形各角平分线的交点.等边三角形的外心与内心重合.特别的:内切圆半径与外接圆半径的比是1:2.OABCD圆与圆的位置关系:.....外离外切相交内切内含.O1.O2.O1.O2.O1
7、.O2.O2.O1.O1.O2两圆的位置关系数量关系及识别方法外离外切相交内切内含d>R+rd=R+rd=R-rd<R-rR-r<d<R+r三.正多边形:2.半径:正多边形外接圆的半径叫做这个正多边形的半径.1.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心.3.中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角.4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距.OABFDCEG3正多边形和圆(1).有关概念(2).常用的方法(3).正多边形的作图EFCD.边心距r半径R中心角O边OABCRda
8、1.圆的周长和面积公式2.弧长的计算公式3.扇形的面积公式S=360nπr2L=180nπr=12lrS或四.圆中的有关计算:周长C=2πr面积s=πr2.Or5.圆锥的展开图:底面侧面aahrS侧=πraS全=πra+πr24.圆柱的展开图:DBCArhS侧=