修改教学设计(教案)模板.doc

修改教学设计(教案)模板.doc

ID:50316089

大小:89.00 KB

页数:6页

时间:2020-03-08

修改教学设计(教案)模板.doc_第1页
修改教学设计(教案)模板.doc_第2页
修改教学设计(教案)模板.doc_第3页
修改教学设计(教案)模板.doc_第4页
修改教学设计(教案)模板.doc_第5页
资源描述:

《修改教学设计(教案)模板.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学设计(教案)模板基本信息学科数学年级初二教学形式师生交流合作教师胡央清单位慈溪逍林初中课题名称2.1等腰三角形学情分析学生理解能力差,班级差生较多,学习积极性还好教学目标1.了解等腰三角形的有关概念。2.掌握等腰三角形的轴对称性:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。3.会运用等腰三角形的概念和轴对称性解决简单几何问题。〖教学重点与难点〗教学过程一、创设情境,引入新课(给大家带来了几张图片,我们一起来欣赏吧!)你能在这些图片中找到熟悉的图形吗?(生:三角形)你能发现这些三角形有什么共同的特点吗?(生:都有两边相等。)对,这节课我们就来研究这

2、种特殊的三角形(板书课题:2.1等腰三角形)二、合作交流,探求新知1.等腰三角形的概念什么样的三角形叫做等腰三角形呢?引导学生说出并板书概念:有两边相等的三角形叫做等腰三角形。在黑板上用圆规画出一个△ABC,问:这是等腰三角形?依据什么?(概念)几何语言:在△ABC中,AB=AC或∵AB=AC∴△ABC是等腰三角形(渗透:图形的定义既是性质又是判定)2.等腰三角形的腰、底边、顶角与底角(这里,AB与AC相等,我们把它叫做——腰(生接,若生接不出师说);另一条边叫做——底边;再看角,∠A叫做——顶角,显然顶角是两腰的夹角∠B、∠C叫做底角,那么底角是哪两边的夹角?这

3、个过程边问边在图上板书,较快过去)等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。3.找一找说一说(根据刚才所学知识,我们来做个练习)如图,点D在AC上,AB=AC,AD=BD。你能在图中找到几个等腰三角形?说出每个等腰三角形的腰、底边和顶角。∠A∠ADBABBC△ABDAD和BDAB和AC△ABC底边顶角腰等腰三角形第三个三角形,△BCD是等腰三角形吗?(让是与不是的同学都说一下理由)小结:只要找到两边相等,就能找到等腰三角形4.火眼睛睛(我们的国旗五星红旗里有五个五角星,那五角星中有等腰三角形吗?我们先了解下五角星

4、的特殊性:五角星外面的十条线段相等,里面的五条线段相等)如图,五角星中有个等腰三角形。让学生较充分尝试讨论后小结:找等腰三角形可以根据腰来找,也可根据顶角来找,找到几个顶角,就能找出几个等腰三角形)5.画一画折一折(等腰三角形的轴对称性)(拿出直尺、圆规以及课前拿到的透明纸,根据要求在透明纸上画出等腰三角形ABC)(1)用直尺和圆规作等腰三角线ABC,使AB=AC=10cm,BC=8cm。(画法指导:画三角形关键是确定三个顶点,先画什么?(任何一边都可以))(2)画出顶角平分线AP所在的直线。(画好的等腰三角形ABC哪个角是顶角,画出顶角平分线AP所在的直线)(3

5、)沿着直线AP将纸片对折,你发现了什么?ACPB(4)由此你得出等腰三角形具有什么特征。结论:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。(这个性质叫做等腰三角形的轴对称性)(课件演示一遍对折后,由角相等得到边AB与AC重合,由边相等得到点B与C重合,说明点B与C是一对对称点)EADBPC三、师生互动,运用新知1.例题解析例如图所示,在△ABC中,AB=AC,AP是△ABC的角平分线。BC与AP有怎样的位置关系?若D,E分别是AB,AC上的点,且AD=AE,则点D,E关于AP对称吗?请说明理由。DE与AP有怎样的位置关系?分析:除了用全等的方法(明确

6、指出用三角形全等来说明角相等是很常用的方法),还有其他方法吗?我们能不能从图形的变换角度去考虑?(渗透用运动的观点来研究图形)等腰三角形的轴对称性等腰三角形是轴对称图形,点B与C是一对对称点,即点B,C关于AP对称,(对称点的连线与对称轴之间存在着怎样的关系?)则根据轴对称图形的性质(对称轴垂直平分对称点连接的线段)得到BC⊥AP∵AB=AC,AP是∠BAC的平分线∴当把图形沿直线AP对折时,线段AB与AC重合∵AD=AE∴点D与E重合∴点D,E关于直线AP对称∴DE⊥AP若AD≠AE,点D,E还会关于AP对称吗?小结:这个例题我们用两种方法来解决:一种是利用全等

7、;一种是利用等腰三角形的轴对称性,从图形的变换的角度来探索的图形规律,也是研究图形的一种重要思想方法。ABCEFD2.做一做如图,AD是等腰△ABC的角平分线,E,F分别是腰AB,AC上的点,请分别作出E,F关于AD的对称点。(本题的意图是进一步巩固等腰三角形的对称性,作法多样)四、探究拓展,能力提升1.探究活动在平面内,分别用3根,5根,6根火柴棒首尾顺次相接搭三角形,多少根火柴能搭成等腰三角形?通过尝试,完成表格.火柴数356789示意图形状等边三角形等腰三角形为了做到不重不漏可以以腰长从大到小排列,或用排序法更有一般性,容易枚举出所有情况,包括非等腰三角形例

8、如17根火

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。