欢迎来到天天文库
浏览记录
ID:50100501
大小:756.00 KB
页数:23页
时间:2020-03-04
《数学华东师大版八年级上册13.3.2 等腰三角形的判定.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、华东师大版八年级(上册)13.3.2等腰三角形的判定它的各部分名称分别是什么?ABC(1)相等的两条边叫做腰。腰腰底边(2)另一边叫底边。顶角底角底角(3)两腰的夹角叫顶角。(4)腰与底边夹角叫底角。1.什么样的三角形叫做等腰三角形?督预示标①等腰三角形是轴对称图形。③等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”),它们所在的直线就是等腰三角形的对称轴。②等腰三角形的两个底角相等(简写成“等边对等角”)。2、等腰三角形有哪些性质?DABC如图,在△ABC中,AB=AC时,(1)∵AD⊥BC,∴∠____=∠
2、____,___=___.(2)∵AD是中线,∴___⊥___,∠____=∠____.(3)∵AD是角平分线,∴___⊥___,____=____.BADCADCADBDCDADBCBDBADBCADCD几何语言:∵AB=AC(已知)∴∠B=∠C(等边对等角)学习目标:学习重点:理解和掌握等腰三角形和等边三角形的判定方法学习难点:对边、角关系互相转化的理解及应用。提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用等腰三角形的判定方
3、法解决问题。过程与方法:情感、态度与价值观:通过动手操作探索并掌握等腰三角形和等边三角形的判定方法。出示《自学提纲》,让学生对照自学提纲,指导自学课本第81——83页内容。自学梳理:自学提纲:1、对于命题〝等腰三角形的两个底角相等〞.请先把它改写成〝如果…那么…〞的形式,然后说出它的逆命题.2、等腰三角形的判定方法是如何发现的,已知什么?需要说明的结论是什么?要说明两条边相等,我们已经有哪些经验?如何证明?怎样添加辅助线?和同学互相交流证明思路。3、等边三角形的判定定理,如何证明?和同学互相交流证明思路。ABC待自主学习完成以后,各小
4、组由组长主持、小组成员合作学习,完成以下程序:1、让每个组员将自己的学习成果讲给其他同学听。2、把在自学的过程中遇到的问题,在小组内讨论交流。3、有争议的问题提出来大家解决,看看那个组的问题最有价值。4、对照学习目标和自学提纲,推选好准备在全班进行学习成果展示的问题和同学。小组答疑:对于命题〝等腰三角形的两个底角相等〞.请先把它改写成〝如果…那么…〞的形式,然后说出它的逆命题.如果一个三角形有两个角相等,那么这个三角形是等腰三角形.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.它是真命题吗?想一想逆命题:展示评价1.在半透
5、明纸上画一线段BC做一做2.以BC为始边,分别以点B和点C为顶点,画两个相等的角(使用量角器),两角中边的交点为点A3.用刻度尺找出边BC的中点D,连接AD然后沿AD对折观察边AB与AC是否重合?ABCD你发现了什么结论?其他同学的结果与你的相同吗?如果一个三角形有两个角相等,那么这个三角形是等腰三角形。ABCD12已知:如图,在ΔABC中,∠B=∠C。求证:AB=AC证明:作∠BAC的平分线AD,则∠1=∠2在△BAD和△CAD中,∵∠B=∠C(已知)∠1=∠2(已作)AD=AD(公共边)∴△BAD≌△CAD(AAS).∴AB=AC
6、(全等三角形的对应边相等).想一想还可以添加什么辅助线证明这一结论?高线,中线可以吗?ABC如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。几何语言:∵∠B=∠C(已知)∴AB=AC(等角对等边)等腰三角形的判定定理:三个角都相等的三角形是等边三角形吗?请说明理由ABC思考已知:如图,在ΔABC中,∠A=∠B=∠C。求证:AB=AC=BC证明:∵∠B=∠C(已知)∴AB=AC(等角对等边).又∵∠A=∠C(已知)∴AB=BC(等角对等边).∴AB=AC=BC∴ΔABC是等边三角形有一个角是600的等腰三
7、角形是等边三角形吗?请说明理由ABC思考已知:如图,在ΔABC中,AB=AC,∠A=600。求证:ΔABC是等边三角形证明:∵AB=AC(已知).∴∠B=∠C(等边对等角)又∵∠A=600(已知)∴∠B=∠C=600∴∠A=∠B=∠C∴ΔABC是等边三角形或∠C=600等边三角形的判定定理1、三个角都相等的三角形是等边三角形2、有一个角等于600的三角形是等边三角形ABC在ΔABC中,∵AB=AC,∠A=600∴ΔABC是等边三角形在ΔABC中,∵∠A=∠B=∠C∴ΔABC是等边三角形数学语言数学语言判断是什么三角形.为什么?例1在,
8、已知A=45,B=90,ABCABC中解∵∠C=180°-∠A-∠B=180°-45°-90°=45°∴∠C=∠A.∴ △ABC是等腰三角形.你能说出它的理由吗?例2:如图,ΔABC的外角的角平分线AD平行于它的第三边B
此文档下载收益归作者所有