欢迎来到天天文库
浏览记录
ID:29598419
大小:278.56 KB
页数:3页
时间:2018-12-21
《八年级数学上册 13.3.2 等腰三角形的判定教案 (新版)华东师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等腰三角形的判定〖教学目标〗◆1、理解等腰三角形的判定方法的证明过程.◆2、通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.◆3、学生初步了解数学来源于实践,反过来又服务于实践的辨证唯物主义观点.〖教学过程〗(一)、提出问题出示投影片(图形出示,内容教师讲解)。某地质专家为估测一条东西流向河流的宽度,他选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度就可知河流宽度。同学们很想知道,这样估测河流宽度的根据是什么呢?这位专家
2、的意思是AB=BC,也就是△ABC是等腰三角形,那么他是怎么知道△ABC是等腰三角形的呢?今天我们就要学习等腰三角形的判定。(板书课题)(二)复习引入A提问:1、如图,在△ABC中,AB=AC,图中必有哪些角相等?为什么?2、反过来,若∠B=∠C,一定有AB=AC吗?BC3、通过“纸制三角形实验”发现“等角对等边”的结论。这个结论是否真实可靠,必须从理论上加以证明。4、等腰三角形判定定理的证明。如果一个三角形有两个角相等,那么这两个角所对的边也相等。已知:ΔABC中,∠B=∠C.求证:AB=AC.(学生思考:定理的证明方法。按实验小组进行分组讨论,探讨证明的思路。然后由一位学生口
3、述,教师板书,学生评论,由此引出多种证法,再由学生归纳作辅助线的方法,教师总结。) 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C.,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引出.再让学生回想等腰三角形中常添的辅助线,学生可找出作ΔABC的平分线AD或作BC边上的高AD等,证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理
4、得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(三)例题教学例1某地质专家为估测一条东西流向河流的宽度,他选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度就可知河流宽度。这个方法正确吗?请说明理由。例2如图,BD是等腰三角形ABC的底边AC上的高,DE∥BC,交AB于点E.判断ΔBDE是不是等腰三角形,并说明理由。(四)小组合作练习(1)已知:OD平分∠AOB,ED∥OB,求证:EO=ED。(2)已知:OD平分∠AOB,EO=ED
5、。求证ED∥OB。(3)已知:ED∥OB,EO=ED。求证:OD平分∠AOB。归纳总结:该图形是有关等腰三角形的一个很常用的基本图形,上述练习说明在该图中“角平分线、平行线、等腰三角形”这三者中若有两者必有第三,熟练这个结论,对解决含有这个基本图形的教复杂的题目是很有帮助的。(五)探究活动(1)已知:如图a,AB=AC,BD平分∠ABC,CD平分∠ACB,过D作EF∥BC交AB于E,交AC于F,则图中有几个等腰三角形?(2)如图b,AB=AC,BF平分∠ABC交AC于F,CE平分∠ACB交AB于E,BF和BE交于点D,且EF∥BC,则图中有几个等腰三角形?(3)等腰三角形ABC中
6、,AB=AC,BD平分∠ABC,CD平分∠ACB,过A作EF∥BC交CD延长线于E,交BD延长线于F,则图中有几个等腰三角形?(自己画图)(4)如图c,若将第(1)题中的AB=AC去掉,其他条件不变,情况会如何?还可证出哪些线段的和差关系?(六)课堂小结(师生共同小结)1、等腰三角形的判定方法2、辅助线3、解决实际问题的关键
此文档下载收益归作者所有