实验与探究 三角形中边与角之间的不等关系 .ppt

实验与探究 三角形中边与角之间的不等关系 .ppt

ID:50087559

大小:1.09 MB

页数:18页

时间:2020-03-04

实验与探究 三角形中边与角之间的不等关系 .ppt_第1页
实验与探究 三角形中边与角之间的不等关系 .ppt_第2页
实验与探究 三角形中边与角之间的不等关系 .ppt_第3页
实验与探究 三角形中边与角之间的不等关系 .ppt_第4页
实验与探究 三角形中边与角之间的不等关系 .ppt_第5页
资源描述:

《实验与探究 三角形中边与角之间的不等关系 .ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1课时等腰三角形的性质R·八年级上册13.3.1等腰三角形新课导入导入课题在前面学习轴对称图形中,大家知道等腰三角形是轴对称图形,今天我们就运用轴对称图形的性质来探究等腰三角形的性质.推进新课知识点1探索并证明等腰三角形的性质探究如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?ABCD探究把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想.在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折

2、一折,你的猜想仍然成立吗?等腰三角形的性质:性质1:等腰三角形的两个底角相等;性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.由上面的操作过程获得启发,我们可以利用三角形的全等证明这些性质.ABCD如图,△ABC中,AB=AC,作底边BC的中线AD.证明:AB=AC,∵BD=CD,AD=AD,∴△BAD≌△CAD(SSS).∴ ∠B=∠C.ABCD∴ ∠BAD=∠CAD,∠BDA=∠CDA.∵ ∠BDA+∠CDA=180°,∴ ∠ADB=90°.∴AD⊥BC.在等腰三角形性质的探索过程和证明过程中“

3、折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.巩固练习练习1填空:(1)如图,△ABC中,AB=AC,∠A=36°,则∠B=°;ABC72(2)如图,△ABC中,AB=AC,∠B=36°,则∠A=°;ABC108知识点2等腰三角形性质的运用例1如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∠ABC=∠C=∠BDC,∠A=∠AB

4、D设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°解得x=36°.所以,在△ABC中,∠A=36°,∠ABC=∠C=72°.巩固练习练习2在下列等腰三角形中,分别求出它们的底角的度数.72°30°随堂演练基础巩固1.等腰△ABC中,AB=AC,∠A=30°,则∠B=()A.30°B.60°C.75°D.85°C2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.20°或80°D.50°或80

5、°C课堂小结等腰三角形的性质:性质1:等腰三角形的两个底角相等;性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.课后作业1.从课后习题中选取;2.完成练习册本课时的习题。声明本文件仅用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本司及相关权利人的合法权利。除此以外,将本文件任何内容用于其他用途时,应获得授权,如发现未经授权用于商业或盈利用途将追加侵权者的法律责任。武汉天成贵龙文化传播有限公司湖北山河律师事务所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。