导数的应用组合课件.ppt

导数的应用组合课件.ppt

ID:50049030

大小:273.00 KB

页数:14页

时间:2020-03-02

导数的应用组合课件.ppt_第1页
导数的应用组合课件.ppt_第2页
导数的应用组合课件.ppt_第3页
导数的应用组合课件.ppt_第4页
导数的应用组合课件.ppt_第5页
资源描述:

《导数的应用组合课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、例1:(1)命题甲:f(x),g(x)在x=x0处均可导;命题乙:F(x)=f(x)+g(x)在x=x0处可导,则甲是乙成立的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)即不充分也不必要条件A(2)下列函数在点x=0处没有切线的是()(A)y=x3+sinx(B)y=x2-cosx(C)y=xsinx(D)y=+cosxD(3)若则f(x)可能是下式中的()B(4)点P在曲线y=x3-x+2/3上移动时,过点P的曲线的切线的倾斜角的取值范围是()D例2:已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1

2、,S2均相切,求l的方程.解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).对于则与S1相切于P点的切线方程为y-x12=2x1(x-x1),即y=2x1x-x12.①对于与S2相切于Q点的切线方程为y+(x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②因为两切线重合,若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.所以所求l的方程为:y=0或y=4x-4.例3:在曲线y=x3-6x2-x+6上,求斜率最小的切线所对应的切点,并证明曲线关于此

3、点对称.解:由于,故当x=2时,有最小值.而当x=2时,y=-12,故斜率最小的切线所对应的切点为A(2,-12).记曲线为S,设P(x,y)∈S,则有y=x3-6x2-x+6.又点P关于点A的对称点为Q(4-x,-24-y),下证Q∈S.将4-x代入解析式:(4-x)3-6(4-x)2-(4-x)+6=64-48x+12x2-x3-96+48x-6x2-4+x+6=-x3+6x2+x-30=-(x3-6x2-x+6)-24=-24-y.即Q(4-x,-24-y)的坐标是S的方程的解,于是Q∈S.这就证明了曲线S关于点A中心对称.练习1:已

4、知曲线C:y=3x4-2x3-9x2+4;(1)求曲线C上横坐标为1的点的切线方程;(2)第(1)小题中切线与曲线C是否还有其它公共点?如果有,求出这些点的坐标.解:(1)把x=1代入曲线C的方程得切点(1,-4).,所以切线的斜率k=12-6-18=-12.故切线方程为y+4=-12(x-1),即y=-12x+8.故除切点以外,还有两个交点(-2,32),(2/3,0).例4:如果圆的半径以2cm/s的等速度增加,求圆半径R=10cm时,圆面积增加的速度.解:由已知知:圆半径R=R(t),且=2cm/s.又圆面积S=πR2,所以=40π(

5、cm)2/s.故圆面积增加的速度为40π(cm)2/s.例5:在曲线上求一点,使通过该点的切线平行于x轴,并求此切线的方程.解:设所求点为P(x0,y0).则由导数的几何意义知:切线斜率把x0=0代入曲线方程得:y0=1.所以点P的坐标为(0,1),切线方程为y-1=0.例6:求曲线y=xlnx的平行于直线x-y+1=0的切线方程.解:设该切线与曲线相切的切点为(x0,x0lnx0).故曲线在点(x0,x0lnx0)处的切线斜率为lnx0+1.由已知可得:lnx0+1=1,即x0=1,故切点为(1,0).所以所求切线方程为y-0=x-1,即

6、x-y-1=0.答案:①x+ey-2e=0,②(1+e)x-ey-e2=0.练习2:分别求曲线①y=logxe;②在点(e,1)处的切线方程.延伸:设点P是曲线y=ex上任意一点,求点P到直线y=x的最小距离.答案:例7:求证双曲线C1:x2-y2=5与椭圆C2:4x2+9y2=72在交点处的切线互相垂直.证:由于曲线的图形关于坐标轴对称,故只需证明其中一个交点处的切线互相垂直即可.联立两曲线方程解得第一象限的交点为P(3,2),不妨证明过P点的两条切线互相垂直.由于点P在第一象限,故由x2-y2=5得同理由4x2+9y2=72得因为k1k

7、2=-1,所以两条切线互相垂直.从而命题成立.例8:求下列函数的导数:(1)y=xx(x>0);(2)y=[f(x)]g(x).解:(1)两边取对数,得lny=xlnx.由于y是x的函数,由复合函数的求导法则对上式两边对x求导,可得:(2)两边取对数,得lny=g(x)lnf(x),两边对x求导,可得:说明:(1)解法可能对lny求导不易理解,事实上,若u=lny,y=f(x),则(2)本题用的求导方法习惯上称为对数求导法,即先两边取对数,再对x求导.一般适用于下列两类函数:①形如y=(x-a1)(x-a2)…(x-an)的函数,取对数后,

8、可将积转化为和的形式,或,取对数后,可转化为代数和的形式.②无理函数或形如y=[f(x)]g(x)这类幂指函数.(3)对数求导法的优点:一是可使问题简单化(积、商变和、差,幂、根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。