《导数的应用》ppt课件

《导数的应用》ppt课件

ID:40045699

大小:136.00 KB

页数:10页

时间:2019-07-18

《导数的应用》ppt课件_第1页
《导数的应用》ppt课件_第2页
《导数的应用》ppt课件_第3页
《导数的应用》ppt课件_第4页
《导数的应用》ppt课件_第5页
资源描述:

《《导数的应用》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、知识点1.导数应用的知识网络结构图:2.基本思想与基本方法:①数形转化思想:从几何直观入手,理解函数单调性与其导数的关系,由导数的几何意义直观地探讨出用求导的方法去研究,解决有导数函数的极值与最值问题。这体现了数学研究中理论与实践的辩证关系,具有较大的实践意义。②求有导数函数y=f(x)单调区间的步骤:i)求f′(x);ii)解不等式f′(x)>0(或f′(x)<0);iii)确认并指出递增区间(或递减区间)。③证明有导数函数y=f(x)在区间(a,b)内的单调性:i)求f′(x);ii)解不等式f′(x)>0(

2、或f′(x)<0);iii)确认f′(x)在(a,b)内的符号;iv)作出判断。④求有导数的函数y=f(x)的极值的步骤:i)求导数f′(x);ii)求方程f′(x)=0的全部实根;iii)检查f′(x)在方程f′(x)=0的根左右两侧的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。⑤设y=f(x)在[a,b]上有定义,在(a,b)内有导数,求f(x)在[a,b]上的最大值和最小值的步骤:i)求f(x)在(a,b)内的极值;ii)将f(x)的各极值与f(a)

3、、f(b)比较,确定f(x)的最大值与最小值。⑥在实际问题中,如果函数在区间内只有一个极值点(单峰函数),那么,只要根据实际意义判定最值,不必再与端点的函数值作比较。例2:已知函数f(x)=ax3+bx2,曲线y=f(x)过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直.(1)求a、b的值;(2)若f(x)在区间[m,m+1]上单调递增,求m的取值范围.解:(1)由题意得:(2),解得x>0或x<-2.故f(x)的单调递增为(-∞,-2]和[0,+∞).即m+1≤-2或m≥0,故m≤-3或m≥0.练习1

4、:已知函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2.(1)试确定常数a、b的值;(2)求函数的单调递增区间.答案:(1)a=1,b=4.(2)单调递增区间为(-∞,-1)和(1,+∞).例3:试问:曲线y=x6/3上哪一点的法线在y轴上截距最小?(所谓法线是指:过曲线上一点与以此点为切点的切线垂直的直线).解:在已知曲线上任取一点(x,x6/3),则过该点的切线的斜率为,从而法线的斜率为故法线方程为令X=0,得法线在y轴上的截距:则令,得当x<-1时,,则Y单调减小;当-1

5、加;当01时,,则Y单调增加.故当时,Y有最小值5/6,此时点为所求.xy例4:如图,在二次函数f(x)=4x-x2的图象与x轴所围成的图形中有一个内接矩形ABCD,求这个矩形的最大面积.解:设B(x,0)(0

6、AB

7、=4x-x2,

8、BC

9、=2(2-x).故矩形ABCD的面积为:S(x)=

10、AB

11、

12、BC

13、=2x3-12x2+16x(0

14、求xy的最大值.解:由x2-2x+4y2=0得:(x-1)2+4y2=1.设,由x,y为正实数得:设令,得又,又f(0)=f(π)=0,故当时,例6:证明不等式:证:设则令,结合x>0得x=1.而01时,,所以x=1是f(x)的极小值点.所以当x=1时,f(x)取最小值f(1)=1.从而当x>0时,f(x)≥1恒成立,即:成立.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。