欢迎来到天天文库
浏览记录
ID:49983470
大小:1.36 MB
页数:72页
时间:2020-03-06
《kejian 5.1定积分的概念与性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一节定积分的概念与性质一、问题的提出二、定积分定义三、定积分的性质四、小结思考题第五章定积分一、问题的提出abxyo实例1(求曲边梯形的面积)abxyoabxyo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.播放观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积
2、的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯
3、形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,曲边梯形面积的近似值为曲边梯形面积为实例2(求变速直线运动的路程)思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割部分路程值某时刻的速度(2)求和(3)取极限路程的精确值二、定积分定义定义1.定积
4、分定义被积函数被积表达式积分变量记为积分上限积分下限积分和注意:定理1定理22.函数的可积性3.定积分概念的意义曲边梯形的面积曲边梯形的面积的负值4.定积分的几何意义几何意义:5.定积分与不定积分的区别例1利用定义计算定积分解例2利用定义计算定积分解证明利用对数的性质得极限运算与对数运算换序得故三、定积分的性质对定积分的补充规定:说明在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.证(此性质可以推广到有限多个函数作和的情况)性质1证性质2补充:不论的相对位置如何,上式总成立.例若(定积分对于积分区间具有可加性)则性质3证
5、性质4性质5解令于是性质5的推论:证(1)证说明:可积性是显然的.性质5的推论:(2)证(此性质可用于估计积分值的大致范围)性质6解解证由闭区间上连续函数的介值定理知性质7(定积分中值定理)积分中值公式使即积分中值公式的几何解释:在证明问题时常用,需多加关注解由积分中值定理知有使积分中值定理利用f(x)的单调性及积分的估值定理四、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限3.定积分的性质(注意估值性质、积分中值定理的应用)4.典型问题
6、(1)估计积分值;(2)不计算定积分比较积分大小.思考题1将和式极限:表示成定积分.思考题2思考题1解答原式思考题2解答例练习题练习题1练习题1答案练习题2练习题2答案
此文档下载收益归作者所有