欢迎来到天天文库
浏览记录
ID:49981790
大小:229.50 KB
页数:35页
时间:2020-03-05
《现代信号处理_08.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章随机信号的功率谱估计郑宝玉2008.4.11现代谱估计功率谱估计空间谱估计ARMA谱估计(差分模型)最大熵方法(信息论)Pisarenko谐波分析(特征值分解)扩展Prony方法(复指数模型拟合)等价关系波束形成器Capon空间谱MUSIC子空间方法ESPRIT广义特征值分解2内容随机信号的特征经典谱估计与现代谱估计参数模型法概述基于AR模型的谱估计法最大熵谱估计算法最小方差谱估计基于矩阵特征分解的谱估计高阶谱估计3高阶谱估计研究的必要性高阶统计量高阶谱高阶累积量和多谱的性质三阶相关和双谱及其性质基于高阶谱的相位谱
2、估计基于高阶谱的模型参数估计多谱的应用参考:《现代数字信号处理》(184-199;204-205)4研究高阶谱的必要性关于模型参数估计问题所谓模型参数估计,就是根据有限长的数据序列(如模型输出端所观测到的信号y(n)来估计图中随机信号模型的参数,)与前面所述不同之处在于:这里考虑了观测过程所引入的噪声v(n).∑H(z)(h(n))v(n)y(n)x(n)u(n)5研究高阶谱的必要性基于二阶统计量的模型参数估计方法的缺陷前述模型参数估计方法中,估计得到的模型参数仅与信号的自相关函数或功率谱包络相匹配;其功率谱不含信号的相
3、位特性,亦称盲相。即这种模型只适合于高斯随机信号,因为高斯信号仅用二阶统计量(均值和方差)就能加以描述。6研究高阶谱的必要性二阶统计量方法的基本限制前面讨论的方法中,一般都假设:信号模型中的系统H(z)是最小相位的。激励信号u(n)是均值为零,方差为的高斯白噪声。测量信号v(n)是均值为零,方差为的高斯白噪声;且v(n)与信号x(n)统计无关,即v(n)不影响信号的谱形状故有7研究高阶谱的必要性二阶统计量方法存在的问题在许多实际应用(如地震勘探、水声信号处理、远程通信)中,往往不能满足上述假设;甚至系统是非线性的。对于非
4、高斯信号的模型参数,如仅仅考虑与自相关函数匹配,就不可能充分获取隐含在数据中的信息。若信号不仅是非高斯的,而且是非最小相位的,采用基于自相关函数的估计方法所得到的模型参数,就不能反映原信号的非最小相位特点。当测量噪声较大,尤其当测量噪声有色时,基于自相关函数的估计方法所得到的模型参数有较大的估计误差。8研究高阶谱的必要性解决问题的方法从观测数据中提取相位信息信号分析必须具有抗有色噪声干扰的能力因此,必须用高阶谱(高阶统计量)来分析信号9随机信号的高阶特征不同ARMA过程具有相同形状的功率谱,即模型的多重性两个具有零均值和
5、相同方差的高斯白色噪声和指数分布白色噪声显然是不同的随机过程,但它们的功率谱相同用这样两个白色噪声激励同一个ARMA模型,产生的两个ARMA过程显然是不同的随机过程,但它们的功率谱相同两个灰度图相同的图像有可能是不同的图像。以上事实说明:要准确地刻画随机信号,仅使用相关函数(二阶统计量)是不够的,还必须使用更高阶的统计量。三阶和更高阶的统计量统称高阶统计量。相关函数:刻画信号的粗糙像高阶统计量:刻画信号的细节10高阶统计量特征函数与高阶矩特征函数:随机变量x的特征函数定义为或其中f(x)是随机变量x的概率密度函数。高阶矩
6、:对(1b)求k阶导数,得则随机变量x的k阶矩(即k阶原点矩)定义为由于k阶矩由生成,故特征函数为随机变量x的矩生成函数(矩母函数),又成为第一特征函数。11高阶统计量累积量生成函数与高阶累积量(cumulant)累积量生成函数或称为累积量生成函数(第二特征函数或累积量母函数)。高阶累积量:随机变量x的k阶累积量定义为即累积量生成函数的k阶导数在原点的值。12高阶统计量累积量生成函数与高阶累积量(cumulant)高阶矩与高阶累积量的关系关系:(注意:k阶中心矩定义为)结论:-二、三阶累积量分别是二、三阶中心矩;均值为零
7、时,就是二、三阶相关(矩)-四阶以上的累积量不等于相应的中心矩13高阶统计量累积量的物理意义高斯随机变量的高阶矩与累积量高斯随机变量可用二阶矩完全描述。实际上,零均值高斯随机变量的k阶矩(或零均值的k阶中心矩)为高斯随机变量只有一阶和二阶累积量;其二阶以上的累积量为零,它不提供新的信息。即可见,其高阶矩仍然取决于二阶矩。若任一随机变量与高斯随机变量有相同的二阶矩,则累积量就是它们高阶矩的差。故有如下累积量的物理意义。14高阶统计量累积量的物理意义一阶累积量-数学期望:描述了概率分布的中心二阶累积量-方差:描述了概率分
8、布的离散程度三阶累积量-三阶矩:描述了概率分布的不对称程度累积量衡量任意随机变量偏离正态(高斯)分布的程度物理意义偏态与峰态将三阶矩除以均方差的三次方,得偏态系数或偏态:将四阶累积量除以均方差的四次方,得峰态:15高阶谱功率谱的缺点:由功率谱只能恢复,不可能恢复基于自相关函数的辨识系统,无法辨识非最小相位系统“
此文档下载收益归作者所有