Finding community structure in very large networks.pdf

Finding community structure in very large networks.pdf

ID:49874291

大小:194.29 KB

页数:6页

时间:2020-03-05

Finding community structure in very large networks.pdf_第1页
Finding community structure in very large networks.pdf_第2页
Finding community structure in very large networks.pdf_第3页
Finding community structure in very large networks.pdf_第4页
Finding community structure in very large networks.pdf_第5页
资源描述:

《Finding community structure in very large networks.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、PHYSICALREVIEWE70,066111(2004)Findingcommunitystructureinverylargenetworks121,3AaronClauset,M.E.J.Newman,andCristopherMoore1DepartmentofComputerScience,UniversityofNewMexico,Albuquerque,NewMexico87131,USA2DepartmentofPhysicsandCenterfortheStudyofComplexSystems,UniversityofMichigan,An

2、nArbor,Michigan48109,USA3DepartmentofPhysicsandAstronomy,UniversityofNewMexico,Albuquerque,NewMexico87131,USA(Received30August2004;published6December2004)Thediscoveryandanalysisofcommunitystructureinnetworksisatopicofconsiderablerecentinterestwithinthephysicscommunity,butmostmethodsp

3、roposedsofarareunsuitableforverylargenetworksbecauseoftheircomputationalcost.Herewepresentahierarchicalagglomerationalgorithmfordetectingcommunitystructurewhichisfasterthanmanycompetingalgorithms:itsrunningtimeonanetworkwithnverticesandmedgesisOsmdlogndwheredisthedepthofthedendrogram

4、describingthecommunitystructure.Manyreal-worldnetworksaresparseandhierarchical,withm,nandd,logn,inwhichcaseouralgorithmrunsinessentiallylineartime,Osnlog2nd.Asanexampleoftheapplicationofthisalgorithmweuseittoanalyzeanetworkofitemsforsaleonthewebsiteofalargeon-lineretailer,itemsinthen

5、etworkbeinglinkediftheyarefrequentlypurchasedbythesamebuyer.Thenetworkhasmorethan400000verticesand23106edges.Weshowthatouralgorithmcanextractmeaningfulcommunitiesfromthisnetwork,revealinglarge-scalepatternspresentinthepurchasinghabitsofcustomers.DOI:10.1103/PhysRevE.70.066111PACSnumb

6、er(s):89.75.Hc,05.10.2a,87.23.Ge,89.20.HhI.INTRODUCTIONfewthousandverticeswithcurrenthardware.MorerecentlyanumberoffasteralgorithmshavebeenManysystemsofcurrentinteresttothescienti®ccommu-proposed[31±33].In[32],oneofusproposedanalgorithmnitycanusefullyberepresentedasnetworks[1±4].Ex-b

7、asedonthegreedyoptimizationofthequantityknownasamplesincludetheinternet[5]andtheWorldWideWebmodularity[21].Thismethodappearstoworkwellbothin[6,7],socialnetworks[8],citationnetworks[9,10],foodcontrivedtestcasesandinreal-worldsituations,andissub-webs[11],andbiochemicalnetworks[12,13].E

8、achofthesest

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。