欢迎来到天天文库
浏览记录
ID:40365309
大小:2.52 MB
页数:12页
时间:2019-08-01
《Mining Attribute-structure Correlated Patterns in Large Attributed Graphs》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MiningAttribute-structureCorrelatedPatternsinLargeAttributedGraphsArleiSilvaWagnerMeiraJr.MohammedJ.ZakiUniversidadeFederaldeUniversidadeFederaldeRensselaerPolytechnicMinasGeraisMinasGeraisInstituteBeloHorizonte,BrasilBeloHorizonte,BrasilTroy,NYarlei@dcc.
2、ufmg.brmeira@dcc.ufmg.brzaki@cs.rpi.eduABSTRACTtheorganizationofverticesintodensesubgraphs.Forin-stance,weaimtoaddressquestionssuchas:HowdoesaInthiswork,westudythecorrelationbetweenattributesetsparticularsetofinterestsinducecommunitiesinasocialandtheoccur
3、renceofdensesubgraphsinlargeattributednetwork?Whatarethecommunitiesthatemergearoundgraphs,ataskwecallstructuralcorrelationpatternmin-suchinterests?Suchquestionsarerelatedtoimportantso-ing.Astructuralcorrelationpatternisadensesubgraphcialphenomenasuchashom
4、ophily[11]andinfluence[2].inducedbyaparticularattributeset.ExistingmethodsareAlthoughseveraldefinitionsofdensesubgraphshavebeennotabletoextractrelevantknowledgeregardinghowvertexproposedintheliterature,mostofthemdonottakevertexattributesinteractwithdensesub
5、graphs.Structuralcorre-attributesintoconsideration.Furthermore,suchdefinitionslationpatternminingcombinesaspectsoffrequentitemsetdonotprovideanyknowledgeregardinghowdifferentsetsandquasi-cliqueminingproblems.Weproposestatisticalofattributesinducedensesubgra
6、phs.significancemeasuresthatcomparethestructuralcorrela-Thisworkstudiesthecorrelationbetweenvertexattributestionofattributesetsagainsttheirexpectedvaluesusingnullanddensesubgraphs,ataskwecallstructuralcorrelationmodels.Moreover,weevaluatetheinterestingness
7、ofstruc-patternmining.Thestructuralcorrelationofanattributeturalcorrelationpatternsintermsofsizeanddensity.Ansetistheprobabilityofavertextobememberofadenseefficientalgorithmthatcombinessearchandpruningstrate-subgraphinitsinducedgraph.Moreover,astructuralcor
8、-giesintheidentificationofthemostrelevantstructuralcor-relationpatternisadensesubgraphinducedbyaparticularrelationpatternsispresented.Weapplyourmethodforattributeset.Figure1illustratesadatasetforstructuraltheanalysis
此文档下载收益归作者所有