Mining Attribute-structure Correlated Patterns in Large Attributed Graphs

Mining Attribute-structure Correlated Patterns in Large Attributed Graphs

ID:40365309

大小:2.52 MB

页数:12页

时间:2019-08-01

Mining Attribute-structure Correlated Patterns in Large Attributed Graphs_第1页
Mining Attribute-structure Correlated Patterns in Large Attributed Graphs_第2页
Mining Attribute-structure Correlated Patterns in Large Attributed Graphs_第3页
Mining Attribute-structure Correlated Patterns in Large Attributed Graphs_第4页
Mining Attribute-structure Correlated Patterns in Large Attributed Graphs_第5页
资源描述:

《Mining Attribute-structure Correlated Patterns in Large Attributed Graphs》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MiningAttribute-structureCorrelatedPatternsinLargeAttributedGraphsArleiSilvaWagnerMeiraJr.MohammedJ.ZakiUniversidadeFederaldeUniversidadeFederaldeRensselaerPolytechnicMinasGeraisMinasGeraisInstituteBeloHorizonte,BrasilBeloHorizonte,BrasilTroy,NYarlei@dcc.

2、ufmg.brmeira@dcc.ufmg.brzaki@cs.rpi.eduABSTRACTtheorganizationofverticesintodensesubgraphs.Forin-stance,weaimtoaddressquestionssuchas:HowdoesaInthiswork,westudythecorrelationbetweenattributesetsparticularsetofinterestsinducecommunitiesinasocialandtheoccur

3、renceofdensesubgraphsinlargeattributednetwork?Whatarethecommunitiesthatemergearoundgraphs,ataskwecallstructuralcorrelationpatternmin-suchinterests?Suchquestionsarerelatedtoimportantso-ing.Astructuralcorrelationpatternisadensesubgraphcialphenomenasuchashom

4、ophily[11]andinfluence[2].inducedbyaparticularattributeset.ExistingmethodsareAlthoughseveraldefinitionsofdensesubgraphshavebeennotabletoextractrelevantknowledgeregardinghowvertexproposedintheliterature,mostofthemdonottakevertexattributesinteractwithdensesub

5、graphs.Structuralcorre-attributesintoconsideration.Furthermore,suchdefinitionslationpatternminingcombinesaspectsoffrequentitemsetdonotprovideanyknowledgeregardinghowdifferentsetsandquasi-cliqueminingproblems.Weproposestatisticalofattributesinducedensesubgra

6、phs.significancemeasuresthatcomparethestructuralcorrela-Thisworkstudiesthecorrelationbetweenvertexattributestionofattributesetsagainsttheirexpectedvaluesusingnullanddensesubgraphs,ataskwecallstructuralcorrelationmodels.Moreover,weevaluatetheinterestingness

7、ofstruc-patternmining.Thestructuralcorrelationofanattributeturalcorrelationpatternsintermsofsizeanddensity.Ansetistheprobabilityofavertextobememberofadenseefficientalgorithmthatcombinessearchandpruningstrate-subgraphinitsinducedgraph.Moreover,astructuralcor

8、-giesintheidentificationofthemostrelevantstructuralcor-relationpatternisadensesubgraphinducedbyaparticularrelationpatternsispresented.Weapplyourmethodforattributeset.Figure1illustratesadatasetforstructuraltheanalysis

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。