+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns

+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns

ID:40703200

大小:566.56 KB

页数:8页

时间:2019-08-06

+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns_第1页
+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns_第2页
+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns_第3页
+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns_第4页
+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns_第5页
资源描述:

《+ nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONNEURALNETWORKS,VOL.16,NO.6,NOVEMBER20051393NDRAM:NonlinearDynamicRecurrentAssociativeMemoryforLearningBipolarandNonbipolarCorrelatedPatternsSylvainChartier,Member,IEEEandRobertProulx,SeniorMember,IEEEAbstract—Thispaperpresentsanewunsupervisedattractora

2、tscalingparameter[10],[11](see[12]foracomparativeanal-neuralnetwork,which,contrarytooptimallinearassociativeysisofanoptimalprojectionmodelinaHopfieldtypenetwork).memorymodels,isabletodevelopnonbipolarattractorsaswellAlthoughthosevariousmodelshaveabetterperformanceasbipol

3、arattractors.Moreover,themodelisabletodeveloplessthanthesimpleHebbianalgorithm,theyneverthelesshavethespuriousattractorsandhasabetterrecallperformanceunderrandomnoisethananyotherHopfieldtypeneuralnetwork.Thoseproblemofspuriousattractorsandlackthecapacitytodevelopperforma

4、ncesareobtainedbyasimpleHebbian/anti-Hebbiannonbipolarattractors.Inallpreviousmodels,theoutputisboundonlinelearningrulethatdirectlyincorporatesfeedbackfromainahypercubethatlimitstheunit’svaluesto1or1.More-specificnonlineartransmissionrule.Severalcomputersimulationsover,V

5、idyasagar[13]demonstratesthatHopfieldtypenetworksshowthemodel’sdistinguishingproperties.usingastepfunctioncanonlydevelopstableattractorsathyper-IndexTerms—Associativememory,dynamicmodel,neuralnet-cubecorners.Consequently,thosemodelstypicallydevelopex-work,unsupervisedlea

6、rning.tremebehaviorthatrestrictsitscognitiveexplanation.AmorepowerfulmodelwouldbeabletodevelopattractorsanywhereI.INTRODUCTIONwithinahypercubequadrantinsteadofonlyatitsextremities.Toaccomplishthis,researchershaveusedadifferenttypeofTTRACTORneuralnetworks(e.g.,[1]and[2])

7、defineatransmissionruleusingmultiplelimitoutputfunction[14],[15].Aclassofformalmodelsthatareusuallyusedasautoasso-Althoughthissolutionyieldsgoodresults,itdoessowithanin-ciativememory.Thekeymechanismcommontoallattractorcreaseinthelearningrulecomplexity.Moreover,thepropose

8、dneuralnetworksisthepresenceofafeedbackloop.Feedbackmodelismoresensitivetonoisethanitsbinarycounterpart.enable

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。