- Improved_chaotic_associative_memory_for_successive_learning

- Improved_chaotic_associative_memory_for_successive_learning

ID:40254077

大小:399.85 KB

页数:13页

时间:2019-07-29

- Improved_chaotic_associative_memory_for_successive_learning_第1页
- Improved_chaotic_associative_memory_for_successive_learning_第2页
- Improved_chaotic_associative_memory_for_successive_learning_第3页
- Improved_chaotic_associative_memory_for_successive_learning_第4页
- Improved_chaotic_associative_memory_for_successive_learning_第5页
资源描述:

《- Improved_chaotic_associative_memory_for_successive_learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、14ImprovedChaoticAssociativeMemoryforSuccessiveLearningTakahiroIKEYAandYukoOSANATokyoUniversityofTechnologyJapan1.IntroductionRecently,neuralnetworksaredrawingmuchattentionasamethodtorealizeflexibleinformationprocessing.Neuralnetworksconsiderneurongroupsofthebraininthecreature,andimitatet

2、heseneuronstechnologically.Neuralnetworkshavesomefeatures,especiallyoneoftheimportantfeaturesisthatthenetworkscanlearntoacquiretheabilityofinformationprocessing.Inthefiledofneuralnetwork,manymodelshavebeenproposedsuchastheBackPropagationalgorithm(Rumelhartetal.,1986),theSelf-OrganizingMap

3、(Kohonen,1994),theHopfieldnetwork(Hopfield,1982)andtheBidirectionalAssociativeMemory(Kosko,1988).Inthesemodels,thelearningprocessandtherecallprocessaredivided,andthereforetheyneedallinformationtolearninadvance.However,intherealworld,itisverydifficulttogetallinformationtolearninadvance.Sow

4、eneedthemodelwhoselearningandrecallprocessesarenotdivided.Assuchmodel,GrossbergandCarpenterproposedtheAdaptiveResonanceTheory(ART)(Carpenter&Grossberg,1995).However,theARTisbasedonthelocalrepresentation,andthereforeitisnotrobustfordamage.Whileinthefieldofassociativememories,somemodelshave

5、beenproposed(Watanabeetal.,1995;Osana&Hagiwara,1999;Kawasakietal.,2000;Ideguchietal.,2005).Sincethesemodelsarebasedonthedistributedrepresentation,theyhavetherobustnessfordamagedneurons.However,theirstoragecapacityisverysmallbecausetheirlearningprocessesarebasedontheHebbianlearning.Incontr

6、ast,theHeteroChaoticAssociativeMemoryforSuccessiveLearningwithgiveupfunction(HCAMSL)(Arai&Osana,2006)andtheHeteroChaoticAssociativeMemoryforSuccessiveLearningwithMulti-Winnerscompetition(HCAMSL-MW)(Andoetal.,2006)havebeenproposedinordertoimprovethestoragecapacity.Inthisresearch,weproposea

7、nImprovedChaoticAssociativeMemoryforSuccessiveLearning(ICAMSL).TheproposedmodelisbasedontheHeteroChaoticAssociativeMemoryforSuccessiveLearningwithgiveupfunction(HCAMSL)(Arai&Osana,2006)andtheHeteroChaoticAssociativeMemoryforSuccessiveLearningwithMulti-Winnerscompeti

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签