资源描述:
《modularity and community structure in networks》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ModularityandcommunitystructureinnetworksM.E.J.NewmanDepartmentofPhysicsandCenterfortheStudyofComplexSystems,RandallLaboratory,UniversityofMichigan,AnnArbor,MI48109–1040Manynetworksofinterestinthesciences,includingavarietyofsocialandbiologicalnetworks,arefou
2、ndtodividenaturallyintocommunitiesormodules.Theproblemofdetectingandcharacterizingthiscommunitystructurehasattractedconsiderablerecentattention.Oneofthemostsensitivedetectionmethodsisoptimizationofthequalityfunctionknownas“modularity”overthepossibledivisions
3、ofanetwork,butdirectapplicationofthismethodusing,forinstance,simulatedannealingiscomputationallycostly.Hereweshowthatthemodularitycanbereformulatedintermsoftheeigenvectorsofanewcharacteristicmatrixforthenetwork,whichwecallthemodularitymatrix,andthatthisrefor
4、mulationleadstoaspectralalgorithmforcommunitydetectionthatreturnsresultsofbetterqualitythancompetingmethodsinnoticeablyshorterrunningtimes.Wedemonstratethealgorithmwithapplicationstoseveralnetworkdatasets.IntroductionManysystemsofscientificinterestcanberepres
5、entedasnetworks—setsofnodesorverticesjoinedinpairsbylinesoredges.ExamplesincludetheInternetandtheworldwideweb,metabolicnetworks,foodwebs,neuralnetworks,communicationanddistributionnetworks,andsocialnetworks.Thestudyofnetworkedsystemshasahistorystretchingback
6、severalcenturies,butithasexpe-riencedaparticularsurgeofinterestinthelastdecade,especiallyinthemathematicalsciences,partlyasaresultoftheincreasingavailabilityoflarge-scaleaccuratedatadescribingthetopologyofnetworksintherealworld.FIG.1:Theverticesinmanynetwork
7、sfallnaturallyintoStatisticalanalysesofthesedatahaverevealedsomeun-groupsorcommunities,setsofvertices(shaded)withinwhichexpectedstructuralfeatures,suchashighnetworktran-therearemanyedges,withonlyasmallernumberofedgessitivity[1],power-lawdegreedistributions[2
8、],andthebetweenverticesofdifferentgroups.existenceofrepeatedlocalmotifs[3];see[4,5,6]forreviews.Oneissuethathasreceivedaconsiderableamountofattentionisthedetectionandcharacterizationofcom-modelin