《二次函数的图像》典型例题1.doc

《二次函数的图像》典型例题1.doc

ID:49848201

大小:534.50 KB

页数:7页

时间:2020-03-04

《二次函数的图像》典型例题1.doc_第1页
《二次函数的图像》典型例题1.doc_第2页
《二次函数的图像》典型例题1.doc_第3页
《二次函数的图像》典型例题1.doc_第4页
《二次函数的图像》典型例题1.doc_第5页
资源描述:

《《二次函数的图像》典型例题1.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《二次函数的图像》典型例题例1已知二次函数,当x=4时有最小值-3,且它的图象与x轴交点的横坐标为1,求此二次函数解析式。例2如果以y轴为对称轴的抛物线y=ax2+bx+c的图象如图13-25所示,那么代数式b+c-a与零的关系是                                  [   ]A.b+c-a=0;          B.b+c-a>0;C.b+c-a<0;          D.不能确定。例3二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象大致是 [   ]例4如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点

2、在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b。(1)求m的取值范围;(2)若a∶b=3∶1,求m的值,并写出此时抛物线的解析式;(3)设(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:抛物线上是否存在点P,使△PAB的面积等于△BCM面积的8倍?若存在,求出P点坐标;若不存在,请说明理由。7/7例5已知二次函数的图像与x轴相交于点,顶点B的纵坐标是-3.(1)求此二次函数的解析式;(2)若一次函数的图像与x的轴相交于,且经过此二次函数的图像的顶点B,当时,(ⅰ)求的取值范围;(ⅱ)求(O为坐标原点)面积的最小值与最大值.例6求函数解析式的题目(1)已知二次

3、函数的图像经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式.(2)已知抛物线的顶点为,与轴交点为,求此抛物线的解析式.(3)已知抛物线与轴交于,,并经过点,求抛物线的解析式.7/7参考答案例1分析:因为二次函数当x=4时有最小值-3,所以顶点坐标为(4,-3),对称轴为x=4,抛物线开口向上.图象与x轴交点的横坐标为1,即抛物线过(1,0)点.又根据对称性,图象与x轴另一个交点的坐标为(7,0)有下面的草图:解:此题可用以下四种方法求出解析式。  方法一:因为抛物线的对称轴是x=4,抛物线与x轴的一个交点为(1,0),由对称性可知另一点为(7,0),同例1,抛物

4、线y=ax2+bx+c通过(4,-3)、(1,0)、(7,0)三点,由此列出一个含a、b、c的三元一次方程组,可解出a、b、c来。  方法二:由于二次函数当x=4时有最小值-3,又抛物线通过(1,0)点,所以    由上面的方程组解出a、b、c。  方法三:由于抛物线的顶点坐标已知,可以设二次函数式为y=a(x+h)2+k,其中h=-4,k=-3即有y=a(x-4)2-3,式中只有一个待定系数a,再利用抛物线通过(1,0)或通过(7,0)求出a来.即得出.所求二次函数解析式为7/7  方法四:由于抛物线与x轴的两个交点的横坐标分别为x1=1,x2=7.可以采用双根式y=a(x-x1)

5、(x-x2),其中x1=1,x2=7即有y=a(x-1)(x-7)式中只有待定系数a,再把顶点(4,-3)代入上式得:所求二次函数解析式为.例2解:从图13-25上看出抛物线开口向下,所以a<0.当x=0时,y的值为正,所以c>0.又因为抛物线以y轴为对称轴,所以b=0。综上分析知b+c-a>0,应选B。注意:这个题考察了二次函数中三个系数a、b、c的含义,二次项系数a决定抛物线开口方向,c为抛物线在y轴上的截距即抛物线与y轴交点的纵坐标,抛物线的对称轴方程为,要根据图象具体分析才能得出正确结论。例3解:图象大致是D。分析:这一类题是考察数学逻辑推理能力.题目中a,b,c均是变量,字

6、母多不知从何下手考虑.考虑问题应该是有层次的,首先抓住两个函数共性的东西,如两个图象的交点中有一个是(0,c),也就是说两个图象的交点中有一个应在y轴上,从而否定了A.和B.,且c>0.其次考虑完字母c后,再考虑a的取值.若a>0,则直线y=ax+c与x轴交点应在原点左边,这样否定了C.;再检验D.,从二次函数图象知a<0,且c>0,直线y=ax+c与x轴交点应在原点右边,所以D.是正确的.考虑变量的取值范围要先考虑第一个再考虑第二个、第三个有次序地进行,切忌无头绪地乱猜,思维混乱。例4解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).因为A、B两点在原点的两侧,所以x1

7、·x2<0,即-(m+1)<0。当m>-1时,Δ>0,所以m的取值范围是m>-1。(2)因为a∶b=3∶1,设a=3k,b=k(k>0),则x1=3k,x2=-k,所以7/7所以m=2。所以抛物线的解析式是y=-x2+2x+3。(3)易求抛物线y=-x2+2x+3与x轴的两个交点坐标是A(3,0),B(-1,0);抛物线与y轴交点坐标是C(0,3);顶点坐标是M(1,4).设直线BM的解析式为y=px+q,所以直线BM的解析式是y=2x+2.设直线BM与y

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。