欢迎来到天天文库
浏览记录
ID:49840794
大小:224.50 KB
页数:6页
时间:2020-03-04
《垂径定理 教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《垂径定理》教学设计一、学生起点分析学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能.学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力.二、教学任务分析教学目标:1.知识目标:①通过观察实验,使学生理解圆的轴对称性;②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;③掌握辅助线的作法——过圆心作一条与弦垂直的线段。
2、2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透;②激发学生探究、发现数学问题的兴趣和欲望。教学重点:利用圆的轴对称性研究垂径定理及其逆定理.教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.教学方法:探究发现法教具准备:自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。三、教学设计分析本节课设计了四个教学环节:类比引入,猜想探索,知识应用,归纳小结.第一环节类比引入活动内容:1.等腰三角形是轴对称图
3、形吗?2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论?3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?活动目的:通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力.第二环节猜想探索活动内容:1.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能图中有哪些等量关系?说一说你的理由.条件:①CD是直径;②CD⊥AB结论(等量关系):③AM=BM;④=;⑤=.证明:连接OA,OB,则OA=OB.在Rt△OAM和Rt△OBM
4、中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM.∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,和重合,和重合.∴=,=.2.证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容——垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.辨析:判断下列图形,能否使用垂径定理?注意:定理中的两个条件缺一不可——直径(半径),垂直于弦.通过以上辨析,让学生对垂径定理的两个条件的必要性有更充分的认识.练习:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。
5、4.垂径定理逆定理的探索如图,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)下图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.条件:①CD是直径;②AM=BM结论(等量关系):③CD⊥AB;④=;⑤=.让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容——平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5.判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦的直径一定垂直于这条弦.()(3)弦的垂直平分线一定经过圆心.()第三环节知识应用活动内容:讲解例题及完成
6、随堂练习.1.例:如图,一条公路的转弯处是一段圆弧(即图中,点0是所在圆的圆心),其中CD=600m,E为上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.解:连接OC,设弯路的半径为Rm,则OF=(R-90)m.∵OE⊥CD根据勾股定理,得OC²=CF²+OF²即R²=300²+(R-90)².解这个方程,得R=545.所以,这段弯路的半径为545m.2.随堂练习1.1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径.(结果精确到0.1米).3.随堂
7、练习2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?有三种情况:(1)圆心在平行弦外;(2)圆心在其中一条弦上;OCDBAOCDBAOCDBA(3)圆心在平行弦内.活动目的:活动1、2的主要目的是让学生应用新知识构造直角三角形,并通过方程的方法去解决几何问题;活动3的主要目的是让学生通过作垂线段构造符合定理使用的条件,从而运用定理解决问题,以及培养学生解题中的分类思想.第四环节归纳小结活动内容:学生交流总结1.利用圆的轴对称性研究了垂径定理及其逆定理.2.解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定
此文档下载收益归作者所有