欢迎来到天天文库
浏览记录
ID:49773520
大小:10.07 KB
页数:4页
时间:2020-03-04
《整式的加减运算.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、七年级上册数学知识点:整式的加减一、目标与要求 1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。 2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。 3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。 4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。 二、重点 单项式及其相关的概念; 多项式及其相关的概念; 去括号法则
2、,准确应用法则将整式化简。 三、难点 区别单项式的系数和次数; 区别多项式的次数和单项式的次数; 括号前面是“-”号去括号时,括号内各项变号容易产生错误。 四、知识框架 五、知识点、概念总结 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。 2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1. 3.多项式:几个单项式的和叫多项式。 4.多项式的项数与次数:多项式中所含单项
3、式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 5.常数项:不含字母的项叫做常数项。 6.多项式的排列 (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 7.多项式的排列时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。
4、 b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。 8.多项式的加法: 多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。 9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。 10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。 11.掌握同类项的概念时注意: (1)判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 (2)同类项与系数无关,与字母排列的顺序
5、也无关。 (3)所有常数项都是同类项。 12.合并同类项步骤: (1)准确的找出同类项; (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变; (3)写出合并后的结果。 13.在掌握合并同类项时注意: (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0; (2)不要漏掉不能合并的项; (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 14.整式的拓展 整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去
6、括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。 整式四则运算的主要题型有: (1)单项式的四则运算 此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。 (2)单项式与多项式的运算 此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。
此文档下载收益归作者所有