欢迎来到天天文库
浏览记录
ID:49628329
大小:1.20 MB
页数:24页
时间:2020-02-26
《矩形的性质1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.2.1矩形(1)什么是平行四边形?平行四边形有哪些性质?对边平行且相等对角相等邻角互补对角线互相平分温故知新让我们细心观察平行四边形内角的变化观察思考形成概念有一个角是直角的平行四边形叫做矩形.关键词:1.是平行四边形2.有一个角是直角记作:矩形ABCD联系生活那么,在生活中出现了哪些矩形?你能举出实例吗?联系生活下列哪个图形能够反映四边形、平行四边形、矩形的关系?DC四边形矩形平行四边形四边形矩形平行四边形四边形矩形平行四边形平行四边形矩形四边形AB矩形是特殊的平行四边形类比思考 探究性质矩形具有哪些性质呢?1.矩形具有一般四边形具有的性质吗?2.矩形具有平行四边形
2、具有的性质吗?矩形的内角和等于360°矩形具有不稳定性矩形的对边相等矩形的对角相等矩形的对角线互相平分矩形的对边平行问题1矩形是轴对称图形吗?类比思考 探究性质作为特殊的平行四边形,矩形具有平行四边形所有的性质.此外,矩形还有哪些一般平行四边形没有的特殊性质呢?BCDAOOBCDA如果是,指出它的对称轴。问题2:当平行四边形ABCD的一个角为直角时,观察其它角有什么变化?猜想:矩形的四个角都是直角。提出猜想证明猜想求证:矩形的四个角都是直角已知:四边形ABCD是矩形,求证:∠A=∠B=∠C=∠D=90°证明:∵四边形ABCD是矩形∴∠A=90°又∵矩形ABCD是平行四边形∴
3、∠A=∠C=90°∠B=∠D∴∠A=∠B=∠C=∠D=90°结论:矩形的四个角都是直角∵AD//BC∴∠A+∠B=180°∴∠B=∠D=180°-∠A=90°提出猜想问题3:当平行四边形ABCD的一个角为直角时,观察其对角线AC,BD长度有何变化?猜想:矩形的对角线相等。结论:矩形的对角线相等证明猜想已知:矩形ABCD中,对角线AC和BD相交于点O,求证:AC=BD求证:矩形的对角线相等归纳总结矩形具有哪些平行四边形不具有的性质吗?1.矩形是轴对称图形2.矩形的四个角都是直角3.矩形的对角线相等1.矩形具有而一般平行四边形不具有的性质是()A.对角线相等B.对边相等C.对角
4、相等D.对角线互相平分2.下面性质中,矩形不一定具有的是()A.对角线相等B.四个角相等C.是轴对称图形D.对角线互相垂直AD学海无涯你还能得出哪些结论?运用性质 解决问题例1如图,矩形ABCD的两条对角线相交于点O,且∠AOB=60°,AB=4cm.求矩形对角线的长.ABCDOABCDO◆两对全等的等腰三角形.你在矩形中还发现了哪些基本图形?ABCDO◆四个全等的直角三角形.矩形的问题可以转化到直角三角形或等腰三角形来解决.牛刀小试1.矩形ABCD中,若AB=3,BC=4,则矩形的周长=____,面积=____,AC=____,BD=____.2.矩形的面积为48,一条边
5、长为6,求矩形的对角线的长.1.如图,四边形ABCD为矩形,对角线AC、BD相关交于点F,CE平行于DB,交AD的延长线于E,试说明AC=CE.巩固练习BCAFDE巩固练习2.如图,矩形ABCD中,AC与BD交于O点,于E,于F.试说明BE=CF.四个学生正在做投圈游戏,他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点处,这样的队形对每个人公平吗?为什么?OABCD投圈游戏公平,因为OA=OC=OB=OD矩形是轴对称图形,连接对边中点的直线是它的两条对称轴.课堂小结矩形矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分.矩形:有一个角是直角的平行
6、四边形叫做矩形.小练习册课后作业
此文档下载收益归作者所有