全等三角形的判定(二)——SAS.ppt

全等三角形的判定(二)——SAS.ppt

ID:49623925

大小:1.28 MB

页数:33页

时间:2020-02-29

全等三角形的判定(二)——SAS.ppt_第1页
全等三角形的判定(二)——SAS.ppt_第2页
全等三角形的判定(二)——SAS.ppt_第3页
全等三角形的判定(二)——SAS.ppt_第4页
全等三角形的判定(二)——SAS.ppt_第5页
资源描述:

《全等三角形的判定(二)——SAS.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、14.2三角形全等的判定(SAS)ABCA'B'C'若△AOC≌△BOD,对应边:AC=,AO=,CO=,对应角有:∠A=,∠C=,∠AOC=;ABOCD复习:全等三角形的性质BDBODO∠B∠D∠BOD1.只给一个条件(一组对应边相等或一组对应角相等).①只给一条边:②只给一个角:60°60°60°操作:可以发现只给一个条件画出的三角形不能保证一定全等2.给出两个条件:①一边一内角:②两内角:③两边:30°30°30°30°30°50°50°2cm2cm4cm4cm操作:可以发现给出两个条件时画出的三角形也不能保证一定全等。探究1

2、对于三个角对应相等的两个三角形全等吗?ABCDE如图,△ABC和△ADE中,如果DE∥AB,则∠A=∠A,∠B=∠ADE,∠C=∠AED,但△ABC和△ADE不重合,所以不全等。三个角对应相等的两个三角形不一定全等以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?ABCDEF2.5cm3.5cm40°40°3.5cm2.5cm结论:两边及其一边所对的角相等,两个三角形不一定全等探究2注:这个角一定要是这两边所夹的角做一做:画△ABC,使AB=3cm,AC=4cm。画法

3、:2.在射线AM上截取AB=3cm3.在射线AN上截取AC=4cm这样画出来的三角形与同桌所画的三角形进行比较,它们互相重合吗?若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN=45°4.连接BC∴△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?探究3先任意画出一个△ABC,再画出一个△A′B′C′使A′B′=AB,A′C′=AC,∠A=∠A′。画法:2.在射线A′D上截取A′B′=AB3.在射线A′E上截取A′C′=AC1.画∠DA′E=∠A4.连接B′C′∴△A′B′C′就

4、是所求的三角形把你们所画的三角形剪下来与原来的三角形进行比较,它们能互相重合吗?探究4问:如图△ABC和△DEF中,AB=DE=3㎝,∠B=∠E=300,BC=EF=5㎝则它们完全重合?即△ABC≌△DEF?3㎝5㎝300ABC3㎝5㎝300DEF问:如图△ABC和△DEF中,AB=DE=3㎝,∠B=∠E=300,BC=EF=5㎝则它们完全重合?即△ABC≌△DEF?3㎝5㎝300ABC3㎝5㎝300DEF三角形全等判定方法1用符号语言表达为:在△ABC与△DEF中AB=DE∠B=∠EBC=EF∴△ABC≌△DEF(SAS)ABCD

5、EF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”44练一练:1.如图,在下列三角形中,哪两个三角形全等?445530°30°4430°4640°4640°40°①③②⑥⑤④2.在下列图中找出全等三角形,并把它们用直线连起来.Ⅰر30º8cm9cmⅥر30º8cm8cmⅣⅣ8cm5cmⅤ30º8cmر5cmⅧ8cm5cmر30º8cm9cmⅦⅢر30º8cm8cmⅢ8cmⅡ5cm30º已知:如图,AD∥BC,AD=CB求证:△ADC≌△CBA分析:观察图形,结合已知条件,知,AD=CB,AC=CA,但没有给出

6、两组对应边的夹角(∠1,∠2)相等。所以,应设法先证明∠1=∠2,才能使全等条件充足。AD=CB(已知)∠1=∠2(已知)AC=CA(公共边)∴△ADC≌△CBA(SAS)例1:证明:∵AD∥BC∴∠1=∠2(两直线平行,内错角相等)在△DAC和△BCA中DC1AB2B范例学习B2DC1A动态演示图3已知:如图3,AD∥BC,AD=CB,AE=CF求证:AFD≌△CEB证明:∵AD∥BC(已知)∴∠A=∠C(两直线平行,内错角相等)又AE=CF∴AE+EF=CF+EF(等式性质)即AF=CE在△AFD和△CEB中AD=CB(已知)∠

7、A=∠C(已证)AF=CE(已证)∴△AFD≌△CEB(SAS)分析:本题已知中的前两个条件,与例2相同,但是没有另一组夹边对应相等的条件,不难发现图3是由图2平移而得。利用AE=CF,可得:AF=CE变式训练1.ADBEFC12图5变式训练2已知:如图5:AB=AC,AD=AE,∠1=∠2求证:△ABD≌△ACE证明:∵∠1=∠2(已知)∴∠1+∠BAE=∠2+∠BAE(等式性质)即∠CAE=∠BAD在△CAE和△BAD中AC=AB(已知)∠CAE=∠BAD(已证)AE=AD∴△ABD≌△ACE(SAS)分析:两组对应夹边已知,缺

8、少对应夹角相等的条件。由∠BAE是两个三角形的公共部分,可得:∠CAE=∠BAD。例2:因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。