欢迎来到天天文库
浏览记录
ID:49619117
大小:2.83 MB
页数:105页
时间:2020-02-29
《信号与系统PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章连续系统的s域分析4.1拉普拉斯变换一、从傅里叶变换到拉普拉斯变换二、收敛域三、(单边)拉普拉斯变换4.2拉普拉斯变换的性质4.3拉普拉斯变换逆变换4.4复频域分析一、微分方程的变换解二、系统函数三、系统的s域框图四、电路的s域模型点击目录,进入相关章节第四章连续系统的s域分析1.4.5系统微分方程的S域解4.6电路的s域求解4.7连续系统的表示与模拟4.8系统函数与系统特性2.频域分析以虚指数信号ejωt为基本信号,任意信号可分解为众多不同频率的虚指数分量之和。使响应的求解得到简化。物理意义清楚。但也有不足:(1)有些重要信号不存在傅里叶变换,
2、如e2tε(t);(2)对于给定初始状态的系统难于利用频域分析。在这一章将通过把频域中的傅里叶变换推广到复频域来解决这些问题。本章引入复频率s=σ+jω,以复指数函数est为基本信号,任意信号可分解为不同复频率的复指数分量之和。这里用于系统分析的独立变量是复频率s,故称为s域分析。所采用的数学工具为拉普拉斯变换。3.4.1拉普拉斯变换一、从傅里叶变换到拉普拉斯变换有些函数不满足绝对可积条件,求解傅里叶变换困难。为此,可用一衰减因子e-t(为实常数)乘信号f(t),适当选取的值,使乘积信号f(t)e-t当t∞时信号幅度趋近于0,从而使f(t)e
3、-t的傅里叶变换存在。相应的傅里叶逆变换为f(t)e-t=Fb(+j)=ℱ[f(t)e-t]=令s=+j,d=ds/j,有4.4.1拉普拉斯变换双边拉普拉斯变换对Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为Fb(s)的双边拉氏逆变换(或原函数)。二、收敛域只有选择适当的值才能使积分收敛,信号f(t)的拉氏逆变换的物理意义5.4.1拉普拉斯变换例1因果信号f1(t)=et(t),求其拉普拉斯变换。解可见,对于因果信号,仅当Re[s]=>时,其拉氏变换存在。收敛域如图所示。收敛域收敛边界双边拉普拉斯变换存在。使f
4、(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。下面举例说明Fb(s)收敛域的问题。6.4.1拉普拉斯变换例2反因果信号f2(t)=et(-t),求其拉普拉斯变换。解可见,对于反因果信号,仅当Re[s]=<时,其拉氏变换存在。收敛域如图所示。7.4.1拉普拉斯变换例3双边信号求其拉普拉斯变换。求其拉普拉斯变换。解其双边拉普拉斯变换Fb(s)=Fb1(s)+Fb2(s)仅当>时,其收敛域为5、)=–e-3t(–t)–e-2t(–t)f3(t)=e-3t(t)–e-2t(–t)解Re[s]=>–2Re[s]=<–3–3<<–2可见,象函数相同,但收敛域不同。双边拉氏变换必须标出收敛域。9.4.1拉普拉斯变换通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。这样,t<0时,f(t)=0。从而拉氏变换式写为称为单边拉氏变换。简称拉氏变换。其收敛域一定是Re[s]>,可以省略。本课程主要讨论单边拉氏变换。三、单边拉氏变换简记为F(s)=£[f(t)]f(t)=£-1[F(s)]或f(t)←→F(s)10.4.1拉普拉斯变换四、6、常见函数的单边拉普拉斯变换11.4.1拉普拉斯变换12.4.1拉普拉斯变换五、单边拉氏变换与傅里叶变换的关系Re[s]>0要讨论其关系,f(t)必须为因果信号。根据收敛坐标0的值可分为以下三种情况:(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶变换存在,并且F(j)=F(s)s=j如f(t)=e-2t(t)←→F(s)=1/(s+2),>-2;则F(j)=1/(j+2)13.4.1拉普拉斯变换(2)0=0,即F(s)的收敛边界为j轴,如f(t)=(t)←→F(s)=1/s=()+1/j(3)0>0,F7、(j)不存在。例f(t)=e2t(t)←→F(s)=1/(s–2),>2;其傅里叶变换不存在。14.4.2拉普拉斯变换性质4.2单边拉普拉斯变换性质一、线性性质若f1(t)←→F1(s)Re[s]>1,f2(t)←→F2(s)Re[s]>2则a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s)Re[s]>max(1,2)例f(t)=(t)+(t)←→1+1/s,>015.4.2拉普拉斯变换性质例:如图信号f(t)的拉氏变换F(s)=求图中信号y(t)的拉氏变换Y(s)。解:y(t)=4f(0.5t)Y(s)=4×2F(28、s)二、尺度变换若f(t)←→F(s),Re[s]>0,且有实数a>0,则f(at)←→Re
5、)=–e-3t(–t)–e-2t(–t)f3(t)=e-3t(t)–e-2t(–t)解Re[s]=>–2Re[s]=<–3–3<<–2可见,象函数相同,但收敛域不同。双边拉氏变换必须标出收敛域。9.4.1拉普拉斯变换通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。这样,t<0时,f(t)=0。从而拉氏变换式写为称为单边拉氏变换。简称拉氏变换。其收敛域一定是Re[s]>,可以省略。本课程主要讨论单边拉氏变换。三、单边拉氏变换简记为F(s)=£[f(t)]f(t)=£-1[F(s)]或f(t)←→F(s)10.4.1拉普拉斯变换四、
6、常见函数的单边拉普拉斯变换11.4.1拉普拉斯变换12.4.1拉普拉斯变换五、单边拉氏变换与傅里叶变换的关系Re[s]>0要讨论其关系,f(t)必须为因果信号。根据收敛坐标0的值可分为以下三种情况:(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶变换存在,并且F(j)=F(s)s=j如f(t)=e-2t(t)←→F(s)=1/(s+2),>-2;则F(j)=1/(j+2)13.4.1拉普拉斯变换(2)0=0,即F(s)的收敛边界为j轴,如f(t)=(t)←→F(s)=1/s=()+1/j(3)0>0,F
7、(j)不存在。例f(t)=e2t(t)←→F(s)=1/(s–2),>2;其傅里叶变换不存在。14.4.2拉普拉斯变换性质4.2单边拉普拉斯变换性质一、线性性质若f1(t)←→F1(s)Re[s]>1,f2(t)←→F2(s)Re[s]>2则a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s)Re[s]>max(1,2)例f(t)=(t)+(t)←→1+1/s,>015.4.2拉普拉斯变换性质例:如图信号f(t)的拉氏变换F(s)=求图中信号y(t)的拉氏变换Y(s)。解:y(t)=4f(0.5t)Y(s)=4×2F(2
8、s)二、尺度变换若f(t)←→F(s),Re[s]>0,且有实数a>0,则f(at)←→Re
此文档下载收益归作者所有