欢迎来到天天文库
浏览记录
ID:49531064
大小:58.54 KB
页数:4页
时间:2020-03-02
《二次函数强化训练.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二次函数强化训练一、填空题1.右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2≥y1时,x的取值范围_______.2.已知抛物线y=a2+bx+c经过点A(-2,7),B(6,7),C(3,-8)则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为______.4.若二次函数y=x2-4x+c的图像与x轴没有交点,其中c为整数,则c=_______(只要求写出一个).5.已知抛物线y=ax2+bx+c经过点(1,2)与(-1,
2、4),则a+c的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=-s2+s+.如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是______.7.二次函数y=x2-2x-3与x轴两交点之间的距离为______.8.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1
3、,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_____元/m2.二、选择题9.二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c<0D.b2-4ac>0(第9题)(第12题)(第15题)10.已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是()A.y14、C.y35、+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A.(,0)B.(1,0)C.(2,0)D.(3,0)16.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()三、解答题17.如图所示,已知抛物线y=ax2+4ax+t(a>0)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对6、称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m7、成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.(1)求抛物线的对称轴;(2)平行于x轴的直线L的解析式为y=,抛物线与x轴交于A,B两点.在8、抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx
4、C.y35、+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A.(,0)B.(1,0)C.(2,0)D.(3,0)16.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()三、解答题17.如图所示,已知抛物线y=ax2+4ax+t(a>0)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对6、称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m7、成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.(1)求抛物线的对称轴;(2)平行于x轴的直线L的解析式为y=,抛物线与x轴交于A,B两点.在8、抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx
5、+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A.(,0)B.(1,0)C.(2,0)D.(3,0)16.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()三、解答题17.如图所示,已知抛物线y=ax2+4ax+t(a>0)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对
6、称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m7、成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.(1)求抛物线的对称轴;(2)平行于x轴的直线L的解析式为y=,抛物线与x轴交于A,B两点.在8、抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx
7、成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.(1)求抛物线的对称轴;(2)平行于x轴的直线L的解析式为y=,抛物线与x轴交于A,B两点.在
8、抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx
此文档下载收益归作者所有