资源描述:
《不等式的性质(第1课时).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、授课人:谭映虹9.1.2不等式的性质(一)学习目标1、探索并理解不等式的性质;2、会根据不等式的性质解简单的不等式。复习回顾等式的性质分别有哪些??性质1:性质2:探究不等式性质1:1.用“>”或“<”填空,观察不等号的方向是否有变化?5-33-3;5+33+3,①53,-1-(-2)3-(-2);-1+(-2)3+(-2),②-13,(-2)–4(-3)-4;(-2)+4(-3)+4,③-2-3,思考:你发现了什么规律?你能仿照等式的性质用字母表示这个规律吗?不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。符号语言:如果,那
2、么④x<3,x+(-5)3+(-5),⑤a>b,a–cb–c,归纳练习1:说出下面结论的依据。不等式的性质1的运用:(1)∵a0∴a-1+1>0+1()∴a>1练习2:1)如果x+5>4,那么两边都减去5,可得x____-1;2)由不等式x–3<2,得x<5,是在不等式的两边都_______,根据是___________.>加3不等式的性质1练习3:若a>b,用“<”或“>”填空,并说明理由。(1)a-2___b-2,(2)a-b___0.不等式的性质1不等式的性质1>>2.用“>”或“<”填空,观察不等号的方向
3、是否有变化?1÷7(-2)÷7;1×7(-2)×7,②1>(-2),(-2)÷24÷2;(-2)×24×2,③(-2)<4,探究不等式性质2:9÷36÷3;9×36×3,①9>6,思考:你发现了什么规律?你能仿照等式的性质用字母表示这个规律吗?不等式的性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变。归纳>>>>不等式的性质2的运用:1.由不等式2a<8,得a<4,是在不等式的两边都_________,根据是_______________.2.已知x>y,那么____3.如果a>0,那么5a___7a.除以2不等式的性质2><解:因为5<7,
4、当两边都乘以正数a时,不等号方向不变,所以5a<7a。3.用“>”或“<”填空,观察不等号的方向是否有变化?1÷(-7)(-2)÷(-7);1×(-7)(-2)×(-7),②1>(-2),(-2)÷(-2)4÷(-2).(-2)×(-2)4×(-2),③(-2)<4,探究不等式性质3:9÷(-3)6÷(-3);9×(-3)6×(-3),①9>6,思考:你发现了什么规律?你能仿照不等式的性质2用字母表示这个规律吗?不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。归纳><<<不等式的性质3的运用:1.在不等式a>b的两边都乘以-1,可得
5、________,根据是___________.2.在不等式-8<0的两边都乘以-1,可得________,根据是___________.3.在不等式-2a<-2b的两边都_________,可得a____b.4.若-2x>10,则x___-5.-a<-b不等式性质38>0不等式性质3>除以-2不等式的性质3的运用:<解:∵-2x>10(已知)∴(不等式性质3)∴x<-5(化简)4.若-2x>10,则x___-5.如果,那么如果,那么不等号方向不变不等号方向改变巩固练习:1、若a>b,用“<”或“>”填空。(1)a-5____b-5;(2)2a____
6、2b;(3)2a+1____2b+1;(4)-a-1____-b-1.2、将不等式化为x>a或x1,则x___3;(2)若-3x>-6,则x___2.><<>>>3、用“<”或“>”填空。如果a是负数,那么3a___2a。4、以下不等式中,不等号用对了么?(1)3-a<6-a(2)3a<6a解:(1)3<6,根据不等式的性质1,将不等式两边同时减a,3-a<6-a(2)3<6,当a>0时,根据不等式的性质2,3a<6a;当a<0时,根据不等式的性质3,3a>6a.<课堂小结:1.不等式性质2.在运用“不等式性质3”时应注意不
7、等号的方向变化。3.正确应用不等式的性质对不等式进行变形.ThankYou!