欢迎来到天天文库
浏览记录
ID:49472198
大小:40.50 KB
页数:3页
时间:2020-03-01
《认识定义与命题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.1.1命题教学设计【教学目标】知识与技能1、了解命题含义;2、会区分命题的条件和结论,会把命题改写为“如果……,那么……。”的形式;3、会判断真命题和假命题;4、会运用公理、定理、基本事实等进行简单的真命题的证明和会用举反例的方法来说明一个命题是假命题。过程与方法让学生经历观察、分析、讨论的过程,得出可以用举反例的方法判断一个命题是假命题。情感、态度与价值观初步感受公理化方法对数学发展和人类文明的价值。【重点难点】1、让学生分清命题的条件和结论,熟悉命题的表达式;将一个命题改写为“如果……,那么……。”的形式。2、会运用公理、定理、基本
2、事实来进行简单的真命题的证明。【教学过程】一、创设情景,导入新课通过学生自主学习探索本节课的目标和重难点。让学生通过独立和小组合作共同探索,然后提问学生,在学生的回答和补充下,教师总结出本节内容的知识目标并板书。二、师生互动,探究新知教师活动学生活动知识归纳目标1:命题的定义表示判断的语句叫做命题如:我们已经学过的一些图形的特性1、三角形的内角和等于180º。2、如果两个角是对顶角,那么这两个角相等。检测1判断下列句子哪些是命题?(3分钟)1、三角形两边之和大于第三边。()2、时间都去哪了?()3、画一条直线的平行线。()4、四边形都是菱形。
3、()5、长方形的四个角都是直角。()6、同位角相等,两直线平行。()7、对顶角相等。()8、多边形的内角和等于180°。()(1)命题必须是一个句子,通常是一个陈述句,包括肯定句和否定句;(2)命题必须是对某件事情作出肯定或否定的判断;(33、两直线平行,同位角相等。4、直角都相等。9、过点P做线段MN的垂线。()10、走开!())其他,如疑问句、感叹句、祈使句以及表示画图的语句都不是命题。目标2:命题的结构许多命题是由条件和结论两部分组成的,条件是已知事项;结论是由已知事项推出的事项。这样的命题通常可写成“如果……,那么……”的形式。例如:
4、命题(2),如果两个角是对顶角,那么这两个角相等。其中,“两个角是对顶角”是条件,“这两个角相等”是结论。检测2指出下列命题的条件和结论(5分钟)1、两直线平行,同位角相等。2、三条边相等的三角形是等边三角形。3、直角都相等。4、在同一平面内,垂直于同一条直线的两条直线互相平行。请把上述命题改写成“如果……,那么……”的形式。(举手回答)命题改写原则:1、不改变命题的原意;2、改写后的句子要完整、通顺;3、改写过程中,可适当增删词语,切忌生搬硬套。目标3:命题的分类真命题:如果条件成立,那么结论一定成立的命题。假命题:条件成立时,结论不成立的
5、命题。检测3判断下列命题是真命题还是假命题(3分钟)1、相等的角是对顶角。()2、若a>0,b<0,则ab<0。()3、如果a²=b²,则a=b。()4、三角形的外角和等于360º。()5、两点之间,线段最短。()6、内错角相等。()7、若a>b,则a²>b²。()目标4:判断真假命题的方法要判断一个命题是真命题,可以用演绎推理加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题条件而不符合该命题结论的例子就可以了。在数学中,这种方法称为“举反例”。检测4按要求完成下面各题(10分钟)1、请对下列假
6、命题,举一反例加以说明。(1)若a²=b²,则a=b。(2)有两个角是锐角的三角形是锐角三角形。(3)两个无理数的和一定是无理数。2、试证明:“如果一条直线与两条平行线中的一条垂直,那么这一条直线与另一条直线垂直”。(温馨提示:证明命题时,要根据命题画出图形,写出已知和求证。)三、小结与反思四、板书设计1、命题的定义:表示判断的语句2、命题的结构:条件和结论3、命题的分类:真命题和假命题4、真假命题的判断:真命题演绎推理假命题举反例五、布置作业1、课本55页练习题2、导学案86、87页【课后反思】
此文档下载收益归作者所有