资源描述:
《小结与思考 (2).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、线段的最值问题练习1.如图F10-3,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是( )图F10-3A.BCB.CEC.ADD.AC2.如图F10-4,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是( )图F10-4A.B.C.D.3.如图F10-5,点A(a,3),B(b,1)都在双曲线y=上,点C,D分别是x轴、y轴上的动点,则四边形ABCD周长的最小值为( )图F10-5A.5B.6C.2
2、+2D.84.如图F10-6,☉M的半径为2,圆心M的坐标为(3,4),点P是☉M上的任意一点,PA⊥PB,且PA,PB与x轴分别交于A,B两点,若点A,B关于原点O对称,则AB的最小值为( )图F10-6A.3B.4C.6D.85.如图F10-7,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是( )图F10-7A.B.C.6D.36.如图F10-8,抛物线y=x2+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D,E,F分别是BC,BP,P
3、C的中点,连结DE,DF,则DE+DF的最小值为 . 图F10-87.如图F10-9,已知正方形ABCD的边长为4,点E是AB边上一动点,连结CE.过点B作BG⊥CE于点G.点P是AB边上另一动点,则PD+PG的最小值为 . 图F10-9