二次根式的概念.ppt

二次根式的概念.ppt

ID:49202439

大小:996.00 KB

页数:15页

时间:2020-02-01

二次根式的概念.ppt_第1页
二次根式的概念.ppt_第2页
二次根式的概念.ppt_第3页
二次根式的概念.ppt_第4页
二次根式的概念.ppt_第5页
资源描述:

《二次根式的概念.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十五章 二次根式15.1二次根式(1)八年级下册卢龙县陈官屯镇中学 赵晓泉学习目标理解二次根式的概念。会求二次根式中被开方数字母的取值范围。体会分类讨论的数学思想方法。学习探究问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5,如果用含有h的式子表

2、示t,则t=_____.学习探究都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.上面问题中,得到的结果分别是:,,,.分别表示3,S,65,的算术平方根.(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?学习探究把形如,,,用来表示一个非负数的算术平方根的式子,叫做二次根式.(3)根据你的理解,请写出二次根式的定义.学习探究被开方数a≥0;根指数为2.二次根式二次根式:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.思考:判断一个式子是不是二次根式都需要注意

3、哪些?学习探究练习1指出下列哪些是二次根式?(1);(2);(3);(4);(5);(6)   .√√√≥<学习探究解:要使在实数范围有意义,必须x+2≥0,∴x≥-2.∴ 当x≥-2时,在实数范围内有意义.问题2当x是怎样的实数时,在实数范围内有意义?学习探究思考 当x是怎样的实数时,在实数范围内有意义? 呢?学习探究当a>0时,表示a的算术平方根,因此>0;这就是说,(a≥0)是一个非负数.当a=0时,表示0的算术平方根,因此=0;问题3你能比较和0的大小.分类讨论思想双重非负性学习反馈练习1要

4、画一个面积为18的长方形,使它的长与宽之比为3:2,它的长、宽各应取多少?要求:先独立思考解答,再小组讨论核对结果,并准备选派两名同学展示,其中一名同学板书,另一名同学讲解。学习反馈练习2当x是什么实数时,下列各式有意义.(1) ;(2)  ;(3) ;(4).学习反思(1)本节课我学到了___________________(2)我的困惑是_____________________达标检测1.下列各式中,一定是二次根式的是( )A.B.C.D.2.当x______时,二次根式无意义.3.当x=__

5、________时,二次根式有最小值,其最小值是_______.4.对于,小红根据被开方数是非负数,得出a的取值范围是a≥.你认为小红的想法正确吗?如果不正确请你求出正确答案.课后作业作业:教科书第5页第1,3,5题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。