欢迎来到天天文库
浏览记录
ID:48973360
大小:1.45 MB
页数:23页
时间:2020-02-26
《2018-2019学年内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷一、选择题(30分)1.(3分)下列方程是一元二次方程的是 A.B.C.D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是 A.等边三角形B.平行四边形C.正五角星D.正六边形3.(3分)对于抛物线,下列说法正确的是 A.对称轴是直线B.顶点C.与轴交于D.当时,有最小值24.(3分)一元二次方程的根的情况是 A.有两个相等的实数根B.有两个不相等的实数根C.有实数根D.没有实数根5.(3分)如图,将两个全等的直角三角形经过旋转、平移不可以拼成的图形是 A.B.C.D.6.(3分)一个长,宽的
2、矩形铁皮,将四个角各剪去一个边长为的小正方形后,剩余部分刚好围成一个底面积为的无盖长方体盒子,求小正方形边长时,可根据下列方程 A.B.第23页(共23页)C.D.7.(3分)超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应定价为 A.15元或20元B.10元或15元C.10元D.5元或10元8.(3分)四位同学研究函数,是常数),甲发现时,函数有最小值,乙发现函数有最小值,丙发现1是方程的一个根,丁发现时,;已知这四位同学只有一位同学发现的结论是错误的,则该同学是 A.甲B.乙C.
3、丙D.丁9.(3分)如图,在四边形中,,,,设,四边形的面积为,则与之间的函数关系式为 A.B.C.D.10.(3分)若对于任意非零实数,抛物线总不经过点,,则符合条件的点 A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个二、填空(18分)11.(3分)一元二次方程的两实根是,,则 , .第23页(共23页)12.(3分)点与点关于原点对称,则 , .13.(3分)已知,,三点都在二次函数的图象上,则,,的大小关系是 .14.(3分)某商品的销售利润与销售单价存在二次函数关系,且二次项系数,当商品单价为160元和200元时,能获得同样多的利润,要使销售商品利润最
4、大,销售单价应定为 元.15.(3分)对于抛物线,当时,,则抛物线的顶点一定在第 象限.16.(3分)如图,中,,,,边在轴的正半轴上,将绕原点逆时针旋转得到△,则的坐标为 .三、解答题(72分)17.(9分)解方程:(1)(2)(3)18.(5分)已知关于的一元二次方程有两个不相等的实数根,求的取值范围.19.(6分)如图,中,是上一点,交于,交于.(1)求证:四边形是中心对称图形;(2)若平分,求证:点、关于直线对称.第23页(共23页)20.(9分)已知二次函数,图象与轴交于、两点在的左侧),与轴交于点.(1)求图象的对称轴方程及顶点坐标;(2)画出图象;(3)若直线对应的函
5、数为,根据图象直接写出时,的取值范围.21.(8分)正方形的边长为4,对角线相交于点,抛物线经过、、三点,点是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出、、三点坐标;②求抛物线的解析式;(2)求与面积之和的最大值.22.(8分)观察下面一组一元二次方程第23页(共23页)方程(1)的两个实数根是,方程(2)的两个实数根是,方程(3)的两个实数根是 , .①请写出第个一元二次方程及它的两实根方程 ;两个实数根是 , ;②求方程的根的判别式△的算术平方根.23.(9分)如图,正方形内有一点,若,,.(1)画出绕点顺时针旋转得到的;(2)求度数;(3)求正方
6、形的面积.24.(8分)已知关于的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)设方程的两实根分别为、,且,求的值及方程的根.25.(10分)如图,抛物线经过,两点,与轴交于点,连接,,.(1)求抛物线的表达式;(2)求证:平分;(3)抛物线的对称轴上是否存在点,使得是以为直角边的直角三角形,若存在,求出点的坐标;若不存在,请说明理由.第23页(共23页)第23页(共23页)2018-2019学年内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷参考答案与试题解析一、选择题(30分)1.(3分)下列方程是一元二次方程的是 A.B.C.D.【解答】解:满足一元二次方程的条
7、件,故是一元二次方程;整理后不含未知数的二次项,故不是一元二次方程;缺少二次项系数不为0的条件,故不一定是一元二次方程;不是整式方程,故不是一元二次方程.故选:.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是 A.等边三角形B.平行四边形C.正五角星D.正六边形【解答】解:、等边三角形,是轴对称图形,不是中心对称图形,故此选项不合题意;、平行四边形,不是轴对称图形,是中心对称图形,故此选项不合题意;、正五角星,是轴对称
此文档下载收益归作者所有