欢迎来到天天文库
浏览记录
ID:48966342
大小:23.00 KB
页数:4页
时间:2020-02-26
《一次函数的图象与性质 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《一次函数的图像与性质》说课稿尊敬的各位评委、老师:大家好!我是来自mou学校的moumoumou。今天我说课的内容是人教版八年级上册第一章中的《一次函数的图像与性质》,我将从教材分析、教法分析、学法分析、教学流程四个方面说明我对这节课的理解和设计安排。一、教材分析一次函数是学生在中学阶段接触到的最简单、最基本的函数。本节内容安排在正比例函数图像与性质以及一次函数的概念之后,是一次函数的第二课时,它与正比例函数的图像和性质有着紧密联系,是本章的重点内容,主要研究一次函数的图像与性质,它既是正比例函数的图像和性质的拓展,又是继续学习“用函数观点看方程(组)和不等
2、式”的基础。而且探究一次函数图像与性质的方法也为今后学习其他的函数奠定了基础。根据上面的教材分析我将这节课的教学目标定为以下几点:知识目标:(1)知道一次函数的图像是一条直线(2)会选取两个适当的点画一次函数的图像(3)能结合图像理解一次函数的性质能力目标:(1)通过画函数的图像,培养学生的动手能力(2)通过结合函数图像揭示性质的教学,培养学生观察、比较、抽象和概括的能力。(3)培养学生用“数形结合”的思想与方法解决数学问题(4)通过具体的一次函数图像抽象得到一般形式的一次函数图像特征,进而得到函数的性质,让学生经历从特殊到一般的研究问题的过程,体会从特殊到一
3、般的研究问题的方法。根据上面的目标,结合本班学生的具体情况我将本节课的教学重点定为通过画函数图像探究得出一次函数的图像与性质,难点定为如何引导学生用数形结合法探究得出一次函数的图像特征与性质以及一次函数与正比例函数的图像之间的关系。二、教法分析为了突出教学重点,也为了培养学生的能力,我采用“自主探究式”的教学方法利用学生描点作图经历体验,发现问题,分析问题并进一步归纳总结,为了突破难点,我采取“启发式教学”利用多媒体现代教学手段,把抽象的知识直观地展现在学生面前,逐步将学生的感性认识引领到理性的思考,这样的设计充分体现了以学生为主体,老师为主导的教学理念。三、
4、学法分析一堂好的数学课,除了要传授知识给学生,更重要的是要教会学生如何学,因此这节课我将用指导学生应用自主探究、互助合作的学习方法探究得出一次函数的图像特征与性质。根据以上的分析我将本节课的教学流程设计为七个环节。下面我就从这七个环节具体说一说这节课的设想。第一环节:知识回顾问题:1.什么叫正比例函数?一次函数?它们之间有什么关系?2.怎样画函数的图像?3.正比例函数的图像是什么形状?有哪些性质?设计意图:因为这节课将探究一次函数的图像特征与性质,设置这三个问题既是为本节课的自主探究作知识上的准备,也是为引入新课作铺垫。此环节安排用时2分钟。第二环节:问题导入
5、问题:既然正比例函数的图像是一条直线,而它又是特殊的一次函数,那么一次函数的图像是什么形状呢?它有哪些性质?一次函数的图像与正比例函数的图像又有什么关系呢?设计意图:这个问题的设置点明了这节课将要探究的内容,激起了学生的好奇心,引入新课,这个环节只需1分钟。第三环节:合作探究探究1:在同一直角坐标系中画出下列函数的图像(每小组只做一题)(1)y=-6xy=-6x+5(2)y=x+2y=xy=x-2(3)y=0.5x-1y=0.5x(4)y=-2xy=-2x+11.画函数图像:在这个环节出示四组题,分小组按题号选做,同桌合作在事先准备好的坐标纸上画图像,然后全班
6、学生一起交流所画图像的形状,最后师生归纳出一次函数y=kx+b的图像是一条直线。设计意图:这样的设计既让学生经历了“猜想——画图——观察——归纳”的探究过程,还经历了由“特殊——一般”的认知过程,并在动手画图的过程中从“形”的角度感知一次函数的图像特征。接着为了突破教学重点和难点,我将利用多媒体课件展示刚才的一组函数图像,引导学生观察并比较这组函数的解析式以及列表中的数据。2.观察、比较:议一议:正比例函数y=-6x与一次函数y=-6x+5图象有什么异同点.观察、比较:两个函数的解析式与图像,结合列表中的数据你发现这两个图像之间有什么关系?这个环节根据以往的教
7、学情况,学生能发现两个图像都是直线而且图像是互相平行的,两个图像与x、y轴的交点不同这些异同点,但很难说明为什么两个图像是平行的理由。因此我又设计了观察、比较这个环节,采用小组讨论的形式让学生尝试探究一次函数与正比例函数图像的关系,这样的引导将激起学生的探究思考,根据提示学生就会发现两个解析式的相同点是比例系数k相同,不同点在于一次函数的解析式比正比例函数多加了个常数5,从而体现在列表中就是取相同自变量时两个函数值就相差5,对应在图像中就是一次函数的位置要向上平移5个单位。设计意图:激起学生探究思考,引导学生如何探究,指点迷津,引导学生从“数”的角度分析问题,
8、体会数形结合思想的应用,将对两个函数图
此文档下载收益归作者所有