欢迎来到天天文库
浏览记录
ID:48888716
大小:816.80 KB
页数:12页
时间:2020-02-04
《2010年高考江苏数学试题详细解析word版含理科附加题2010.6.9.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、绝密★启用前2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答
2、必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。6.请保持答题卡卡面清洁,不要折叠、破损。学科网学科网学科网学科网学科网学科网学科网学科网学科网学科网一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲_____.[解析]考查集合的运算推理。3B,a+2=3,a=1.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的
3、模为______▲_____.[解析]考查复数运算、模的性质。z(2-3i)=2(3+2i),2-3i与3+2i的模相等,z的模为2。3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。[解析]考查频率分布直方图的知识。100×(0.0
4、01+0.001+0.004)×5=305、设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_______▲_________12[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由g(0)=0,得a=-1。6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______[解析]考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。7、右图是一个算法的流程图,则输出S的值是______▲_______[解析]考查流程图理解。输出。8、函数y=x2(x>0)
5、的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____[解析]考查函数的切线方程、数列的通项。在点(ak,ak2)处的切线方程为:当时,解得,所以。9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____[来源[解析]考查圆与直线的位置关系。圆半径为2,圆心(0,0)到直线12x-5y+c=0的距离小于1,,的取值范围是(-13,13)。10、定义在区间上的函数y=6cosx的图像与y=5
6、tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。[解析]考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为1211、已知函数,则满足不等式的x的范围是__▲___。[解析]考查分段函数的单调性。12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是▲。。来源[解析]考查不等式的基本性质,等价转化思想。,,,的最大值是27。13、在锐角三角形ABC,A、B
7、、C的对边分别为a、b、c,,则=____▲_____。[解析]考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。当A=B或a=b时满足题意,此时有:,,,,=4。(方法二),由正弦定理,得:上式=14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记12,则S的最小值是____▲____。[解析]考查函数中的建模应用,等价转化思想。一题多解。设剪成的小正三角形的边长为,则:(方法一)利用导数求函数最小值。,,当时,递减;当时
8、,递增;故当时,S的最小值是。(方法二)利用函数的方法求最小值。令,则:故当时,S的最小值是。二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算
此文档下载收益归作者所有