资源描述:
《必修二4.3.1空间直角坐标系.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§4.3.1空间直角坐标系问题引入1.数轴Ox上的点M,用代数的方法怎样表示呢?2.直角坐标平面上的点M,怎样表示呢?数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面上的点M,可用一对有序实数(x,y)表示.xOyAOxxM(x,y)xy问题问题引入3.怎样确切的表示室内灯泡的位置?问题§4.3.1空间直角坐标系学习目标:1、空间直角坐标系的建立;2、空间直角坐标系的划分;3、空间点的坐标;4、特殊位置的点的坐标;5、空间点的对称问题。学习目标:以单位正方体的顶点O为原点,分别以射线OA,OC,
2、的方向为正方向,以线段OA,OC,的长为单位长度,建立三条数轴:x轴,y轴,z轴,这时我们建立了一个空间直角坐标系。一、空间直角坐标系:yxzABCO点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy平面、yoz平面、和zox平面.xyz右手直角坐标系oxyz1.x轴与y轴、x轴与z轴均成1350,而z轴垂直于y轴.135013502.y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半.空间直角坐标系的画法:ⅡⅦxoz平面ⅤⅥⅠⅢⅣ
3、Ⅷ•O空间直角坐标系共有八个卦限二、空间直角坐标系的划分:yoz平面xoy平面思考:空间直角坐标系中任意一点的位置如何表示?三、空间点的坐标:设点M是空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于点P、Q和R.yxzM’OMRQP三、空间点的坐标:设点P、Q和R在x轴、y轴和z轴上的坐标分别是x,y和z,这样空间一点M的坐标可以用有序实数组(x,y,z)来表示,(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫做点M的横坐标,y叫做点M的
4、纵坐标,z叫做点M的竖坐标.yxzM’OMRQP想一想:在空间直角坐标下,如何找到给定坐标的空间位置?D(1,3,4)zxyO在空间直角坐标系中标出D点:D(1,3,4)13D`4zxyO在空间直角坐标系中标出D点:D(1,3,4)134D`D小提示:坐标轴上的点至少有两个坐标等于0;坐标面上的点至少有一个坐标等于0。点P的位置原点OX轴上AY轴上BZ轴上C坐标形式点P的位置XOY面内DYOZ面内EZOX面内F坐标形式•Oxyz111•A•D•C•B•E•F(0,0,0)(x,0,0)(0,y,0
5、)(0,0,z)(x,y,0)(0,y,z)(x,0,z)四、特殊位置的点的坐标:xoy平面上的点竖坐标为0yoz平面上的点横坐标为0xoz平面上的点纵坐标为0x轴上的点纵坐标和竖坐标都为0z轴上的点横坐标和纵坐标都为0y轴上的点横坐标和竖坐标都为0(1)坐标平面内的点:(2)坐标轴上的点:规律总结:•Oxyz111•A•D•C•B•E•F练习1、如下图,在长方体OABC-D`A`B`C`中,
6、OA
7、=3,
8、OC
9、=4,
10、OD`
11、=3,A`C`于B`D`相交于点P.分别写出点C,B`,P的坐标.zxyO
12、ACD`BA`B`C`PP`343练习zxyABCOA`D`C`B`QQ`2、如图,棱长为a的正方体OABC-D`A`B`C`中,对角线OB`于BD`相交于点Q.顶点O为坐标原点,OA,OC分别在x轴、y轴的正半轴上.试写出点Q的坐标.思考:思考:点M(x,y,z)是空间直角坐标系O-xyz中的一点(1)与点M关于x轴对称的点:(2)与点M关于y轴对称的点:(3)与点M关于z轴对称的点:(4)与点M关于原点对称的点:(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)五、空间点的对
13、称问题:规律:关于谁对称谁不变,其余的相反。点M(x,y,z)是空间直角坐标系O-xyz中的一点(5)与点M关于平面xOy的对称点:(x,y,-z)(-x,y,z)(x,-y,z)五、空间点的对称问题:规律:关于谁对称谁不变,其余的相反。(6)与点M关于平面yOz的对称点:(7)与点M关于平面zOx的对称点:【总一总★成竹在胸】1、空间直角坐标系的建立(三步);2、空间直角坐标系的划分(八个卦限);3、空间中点的坐标(一一对应);4、特殊位置的点的坐标(表格);5、空间点的对称问题。复习作业:习题4.3
14、A组1、2.