欢迎来到天天文库
浏览记录
ID:48717262
大小:1.14 MB
页数:19页
时间:2020-01-20
《数学人教版八年级上册14.2.1 乘法公式(第1课时)平方差公式.2.1 乘法公式(第1课时)平方差公式.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、两数和乘以它们的差沥林中学八年(6)(7)班(x+a)(x+b)回顾&思考☞(m+a)(n+b)=如果m=n,且都用x表示,那么上式就成为:多项式乘法法则是:用一个多项式的每一项乘另一个多项式的每一项再把所得的积相加。mn+mb+an+ab=x2+(a+b)x+ab这是上一节学习的一种特殊多项式的乘法——两个相同字母的二项式的乘积.如果(x+a)(x+b)中的a、b再有某种特殊关系,又将得到什么特殊结果呢?这就是从本课起要学习的内容.平方差公式计算下列各题:做一做(1)(x+3)(x−3);(2)(1+2a)(1−2a);(3)(x+4y)(x−4y);(4)(
2、y+5z)(y−5z);=x2−9;=1−4a2;=x2−16y2;=y2−25z2;观察&发现观察以上算式及其运算结果,你发现了什么规律?=x2−32;=12−(2a)2;=x2−(4y)2=y2−(5z)2.(a+b)(a−b)=a2−b2.两数和与这两数差的积,等于这两数的平方的差.用式子表示,即:1、等式左边的两个多项式有什么特点?2、等式右边的多项式有什么规律?3、请用一句话归纳总结出等式的规律。两数的和乘以它们的差——平方差公式两个数的和与这两个数的差的积等于这两个数的平方差.公式的基本变形:(a-b)(a+b)=a2-b2特征(1)两个二项式相乘时,
3、有一项相同,另一项符号相反,积等于相同项的平方减去相反数项的平方。(2)公式中的a和b可以是具体数,也可以是单项式或多项式。(a+b)(a−b)=a2−b2初识平方差公式注:必须符合平方差公式特征的代数式才能用平方差公式!!抢答:试一试判断下列式子是否可用平方差公式。(1)(-a+b)(a+b)(2)(-2a+b)(-2a-b)(3)(-a+b)(a-b)(4)(a+b)(a-c)(是)(否)(否)(是)快言快语:1、参照平方差公式“(a+b)(a-b)=a2-b2”填空。(1)(t+s)(t-s)=____(2)(1+n)(1-n)=_____(3)(10+5)(
4、10-5)=______t2-s212-n2102-522、口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b); (4)(a-b)(-a-b).快言快语:3、双基诊断:(3m+2n)(3m-2n)=3m2-2n2()×例题例1利用平方差公式计算:(5+6x)(5−6x);(2)(x+2y)(x−2y);(3)(−m+n)(−m−n).解:(1)(5+6x)(5−6x)=55第一数a52平方−6x6x第二数b平方要用括号把这个数整个括起来,注意当“第一,二数”是一分数或是数与字母的乘积时,再平方;()26x=25
5、−最后的结果又要去掉括号。36x2;(2)(x+2y)(x−2y)=xxx2−()22y2y2y=x2−4y2;(3)(−m+n)(−m−n)=−m−m−m()2−nnn2=m2−n2.试一试:1、(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2(a+b)(a-b)=a2-b22、(-4a-1)(-4a+1)解:原式=(-4a+1)(-4a-1)= (-4a)2-l= 16a2-1.3计算(3a2-7)(-3a2-7).步骤:1、判断;2、调整;3、分步解。(注意:要用好括号;幂的运算。)解:原式=(-7+3a2)(-7-3a2)=(-7)2-(
6、3a2)2=49-9a4.1998例2计算(2000-2)(2000+2)= 4000000-4= 3999996解: 原式=20022、王敏捷同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,王敏捷就说出应付 元,解决实际问题1、计算:1996×2004解:原式=(2000-4)(2000+4)=20002-42=4000000-16=399998499.96小结本节课你学到了什么?试用语言表述平方差公式(a+b)(a−b)=x2−b2。应用平方差公式时要注意一些什么?两数和与这两数差的积,等于它们的平方差。变成公式标准形式后,再用公式
7、。运用平方差公式时,要紧扣公式的特征,找出相等的“项”和符号相反的“项”,然后应用公式;要利用加法交换律,对于不符合平方差公式标准形式者,拓展练习本题是公式的变式训练,以加深对公式本质特征的理解.运用平方差公式计算:(4a1)(4a1).(用两种方法)运用平方差公式时,要紧扣公式的特征,找出相等的“项”和符号相反的“项”,然后应用公式.法一利用加法交换律,变成公式标准形式。(4a−1)(4a−1)==(1)2−(4a)2=1−16a2。法二提取两“−”号中的“−”号,变成公式标准形式。(4a−1)(4a−1)=(4a+1)(4a−1)(4a−1
此文档下载收益归作者所有