回顾旧知.2 二次函数与一元二次方程.pptx

回顾旧知.2 二次函数与一元二次方程.pptx

ID:48715814

大小:574.60 KB

页数:22页

时间:2020-01-20

回顾旧知.2 二次函数与一元二次方程.pptx_第1页
回顾旧知.2 二次函数与一元二次方程.pptx_第2页
回顾旧知.2 二次函数与一元二次方程.pptx_第3页
回顾旧知.2 二次函数与一元二次方程.pptx_第4页
回顾旧知.2 二次函数与一元二次方程.pptx_第5页
资源描述:

《回顾旧知.2 二次函数与一元二次方程.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数与一元二次方程回顾旧知二次函数的一般式:(a≠0)______是自变量,____是____的函数。xyx当y=0时,ax²+bx+c=0ax²+bx+c=0这是什么方程?是我们已学习的“一元二次方程”一元二次方程根的情况与b²-4ac的关系?探究一:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系?1、一次函数y=kx+b与一元一次方程kx+b=0有什么关系?2、你能否用类比的方法猜想二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系?以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空

2、气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?实际问题解:(1)当h=15时,20t–5t2=15t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.1s3s15m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s

3、)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)当h=20时,20t–5t2=20t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.2s20m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)当h=20.5时,20t–5t2=20.5t2-4t+4.1=0因为(-4)2-4×4.1<0,所以方程无实

4、根。球的飞行高度达不到20.5m.20.5m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(3)球的飞行高度能否达到20.5m?为什么?(4)当h=0时,20t–5t2=0t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面。0s4s0m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时

5、间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(4)球从飞出到落地要用多少时间?从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。自由讨论为一个常数(定值)例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.已知二次函数,求自变量的值解一元二次方程的根二次函数与一元二次方程的关系(1)1、二次函数y=x2+x-2,y=x2

6、-6x+9,y=x2–x+1的图象如图所示。(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2–x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?答:2个,1个,0个边观察边思考(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数与x轴交点坐标相应方程的根(-2,0),(1,0)x1=-2,x2=1(3,0)x1=x2=3无交点无实根抛物线y=ax2+bx+c与x轴

7、交点的横坐标是方程ax2+bx+c=0的根。归纳一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)下列二次函数的图象与x轴有交点吗?若有,求出交点坐标.(1)y=2x2+x-3(2)y=4x2-4x+1(3)y=x2–x+1探究xyo令y=0,解一元二次方程的根(1)y=2x2+x-3解:当y=0时,2x2+x-3=0(2x+3)(x-1)=0x1=,x2=1-32所以与x轴有交点,有两个交点。xyoy=a(x-x1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。