资源描述:
《全等三角形的判定复习课.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、全等三角形的复习温故而知新1、全等三角形的定义?能够完全重合的两个三角形叫全等三角形2、全等三角形的性质?ABCA’B’C’∠A=∠A∠B=∠B∠C=∠CAB=A’B’BC=B’C’AC=A’C’全等三角形对应边相等,对应角相等三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:三角形全等判定方法1知识梳理:三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形
2、全等。(可以简写成“边角边”或“SAS”)知识梳理:FEDCBAAC=DF∠C=∠FBC=EF∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法3知识梳理:知识梳理:思考:在△ABC和△DFE中,当∠A=∠D,∠C=∠F和AB=DE时,能否得到△ABC≌△DFE?三角形全等判定方法4有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。∠A=∠D
3、(已知)∠B=∠E(已知)AC=DF(已知)在△ABC和△DEF中∴△ABC≌△DEF(AAS)ABCDEFAC=DFAB=DE在Rt△ABC与Rt△DEF中,Rt△ABC≌Rt△DEF(HL)斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”)知识梳理:直角三角形全等判定方法典型例题:例1:如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD,可补充的一个条件是.分析:现在我们已知A→∠CAB=∠DAB①用SAS,需要补充条件AB=AC,②用ASA,需要补充条件∠CBA=∠DBA,③用AAS,需要补充条件∠C=∠D,
4、④此外,补充条件∠CBE=∠DBE也可以(?)SASASAAASS→AB=AB(公共边).AB=AC∠CBA=∠DBA∠C=∠D∠CBE=∠DBE例3(2006湖北十堰):如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,其中能使ΔABC≌ΔAED的条件有()个.A.4B.3C.2D.1在ΔABC和ΔAED中AC=AD∠BAC=∠EAD∠B=∠E∴ΔABC≌ΔAED(AAS)∠B=∠E∠B=∠E,B典型例题:(1)求证:ΔABC≌ΔDEF;(1)证明:∵AC∥DF(已知)∴∠A=∠D(两直线平行,内错角
5、相等)AB=DE(已知)∠A=∠D(已证)AC=DF(已知)∴ΔABC≌ΔDEF(SAS)在ΔABC和ΔDEF中例4:如图,A,E,B,D在同一直线上,在ΔABC和ΔDEF中,AB=DE,AC=DF,AC∥DF,典型例题:∵BE=EB(公共边)又∵AC∥DB(已知)∠DBE=∠CEB(两直线平行,内错角相等)例7:如图,AC∥DB,AC=2DB,E是AC的中点,求证:BC=DE证明:∵AC=2DB,AE=EC(已知)∴DB=ECDB=EC∠DBE=∠CEBBE=EB∴ΔDBE≌ΔCEB(SAS)∴BC=DE(全等三角形的对应边相等)典型例题:例8:如图在Δ
6、ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于F,若BF=AC,那么∠ABC的大小是()A.40°B.50°C.60°D.45°解:∵AD⊥BC,BE⊥AC∴∠ADB=∠ADC=∠BEC=90°∴∠1=∠2在ΔACD和ΔBDF中12∠1=∠2(已证)AC=BF(已知)∠ADC=∠ADB(已证)∴ΔACD≌ΔBDF(ASA)∴AD=BD(全等三角形对应边相等)∴∠ABC=45°.选DD典型例题:如图是用两根长度相等的拉线固定电线杆的示意图.其中一根拉到B,另一根拉到C。那么C、B两端点到D的距离DC和DB的大小有何关系?说明理由。练一练如图是用两根长
7、度相等的拉线固定电线杆的示意图.其中一根拉到B,另一根拉到C。那么C、B两端点到D的距离DC和DB的大小有何关系?说明理由。练一练BACDAD=ADAB=AC在Rt△ABD与Rt△ADC中,Rt△ABD≌Rt△ADC(HL)答:OC=OBOC=OBADEFCGB4方法规律总结全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证线段或角,在哪两个可能全等的三角形中②分析要证两个三角形全等,已有什么条件,还缺什么条件。小结:1.在证明全等三角形或利用它证明线段或角的相等时,首先要寻找我们已经知道了什么(从已知条件,公共边,公共角,对顶角等隐
8、含条件中找对应相等的边或角)2.注意正确地书写证明格式(顺序和对应