资源描述:
《数学人教版七年级下册5.3平行线的性质1.2.3.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.3.1平行线的性质(1)ABP学前准备1、已知直线AB及其外一点P,画出过点P的AB的平行线。2、回答:如图(1)∠3=∠B,则EF∥AB,依据是(2)∠2+∠A=180°,则DC∥AB,依据是(3)∠1=∠4,则GC∥EF,依据是(4)GC∥EF,AB∥EF,则GC∥AB,依据是同位角相等,两直线平行同旁内角互补,两直线平行内错角相等,两直线平行如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线的判定方法有哪三种?它们是先知道什么……、后知道什么?同位角相等内错角相等同旁内角互补两直线平行3
2、.问题方法4:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.创设实验情境试验1:以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(学生作业本的两条横格线a、b是平行线).(1)要求学生任意画一条直线c与直线a、b相交;(2)选一对同位角来度量,看看这对同位角是否相等.心动不如行动猜一猜:如果a//b,∠1和∠2相等吗?b12ac新知探究验证猜想65°65°cab12合作交流一量一量b2ac1拼一拼∠1=∠2如果两直线不平行,上述结论还
3、成立吗?两直线平行,同位角相等.平行线的性质1结论两条平行线被第三条直线所截,同位角相等.性质发现∴∠1=∠2.∵a∥b,简单说成:符号语言:b12ac如图:已知a//b,那么2与3相等吗?为什么?解∵a∥b(已知),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).合作交流b12ac3两直线平行,内错角相等.平行线的性质2结论两条平行线被第三条直线所截,内错角相等.性质发现∴∠2=∠3.∵a∥b,符号语言:简写为:b12ac3解:∵a//b(已知),如图,已知
4、a//b,那么2与4有什么关系呢?为什么?合作交流b12ac4∴1=2(两直线平行,同位角相等).∵1+4=180°(邻补角定义),∴2+4=180°(等量代换).两直线平行,同旁内角互补.平行线的性质3结论两条平行线被第三条直线所截,同旁内角互补.性质发现∴2+4=180°.∵a∥b,符号语言:简写为:b12ac4整理归纳:平行线的性质:性质1:两直线平行,同位角相等.∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)性质2:两直线平行,内错角相等.∵a∥b(已知)∴∠1=∠3(两直
5、线平行,内错角相等)性质3:两直线平行,同旁内角互补.∵a∥b(已知)∴∠1+∠4=180°(两直线平行,同旁内角互补)同位角相等内错角相等同旁内角互补两直线平行判定性质已知结论结论已知平行线的性质与判定的区别:练一练:1.如图,AB,CD被EF所截,AB//CD.按要求填空:若∠1=120°,则∠2=____°( );∠3=___-∠1=__°( )123120180°60两直线平行,内错角相等.两直线平行,同旁内角互补.2.如图,已知AB//CD,AD//BC.填空:(
6、1)∵AB//CD(已知),∴∠1=∠___( );(2)∵AD//BC(已知)∴∠2=∠___( ).两直线平行,内错角相等.两直线平行,内错角相等.12DACB3.如图,△ABC的边AB//CE,则:∠A=∠__();∠B=∠__().运用刚才的推理,可以说明一个结论,你想到了吗?12思考:三角形的三个内角和等于180°2两直线平行,内错角相等.1两直线平行,同位角相等.小青不小心把家里的梯形玻璃块打碎了,还剩下梯形上底的一部分(如图)。要订造一块新的玻璃,已经量得,你想一想,梯形另外两个角
7、各是多少度?解:因为梯形上.下底互相平行,所以梯形的另外两个角分别是ADBCABCD如图,在汶川大地震当中,一辆抗震救灾拖拉机经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?1420BCAD?解:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等).又∵∠B=142°(已知),∴∠B=∠C=142°(等量代换).展示你的才华解:∵AB//CD(已知)∴∠C=∠1()又∵∠A=∠C(已知)∴∠A=()∴AE//FC(
8、)∴∠E=∠F()ADECBF两直线平行,同位角相等∠1等量代换内错角相等,两直线平行两直线平行,内错角相等如图,已知AB//CD,∠A=∠C,试说明∠E=∠F??1平行线的性质和判定综合应用还有其它解法吗?234一、平行线的性质:两直线平行同旁内角互补内错角相等同位角相等二、平行线的性质与判定的区别:已知角之间的关系(相等或互补),得到两直线平行的结论,是平行线的判定。已知两直线平