欢迎来到天天文库
浏览记录
ID:48655756
大小:466.50 KB
页数:16页
时间:2020-01-18
《数学人教版八年级下册17.2勾股定理逆定理及其综合应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、历史因你而改变学习因你而精彩第十七章勾股定理17.1勾股定理(二)结论变形c2=a2+b2abcABC(1)求出下列直角三角形中未知的边.610ACB8A15CB练习30°2245°回答:①在解决上述问题时,每个直角三角形需知道几个条件?②直角三角形哪条边最长?有一个边长为50dm的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数)50dmABCD解:∵在Rt△ABC中,∠B=90°,AC=BC=50,∴由勾股定理可知:例1:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m.如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0.4m
2、吗?DE解:在Rt△ABC中,∵∠ACB=90°∴AC2+BC2=AB22.42+BC2=2.52∴BC=0.7m由题意得:DE=AB=2.5mDC=AC-AD=2.4-0.4=2m在Rt△DCE中,∴BE=1.5-0.7=0.8m≠0.4m答;梯子底端B不是外移0.4m∵∠DCE=90°∴DC2+CE2=DE222+BC2=2.52∴CE=1.5m例2:如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?CAEB
3、Dx25-x解:设AE=xkm,根据勾股定理,得AD2+AE2=DE2BC2+BE2=CE2又∵DE=CE∴AD2+AE2=BC2+BE2即:152+x2=102+(25-x)2答:E站应建在离A站10km处。∴X=10则BE=(25-x)km1510例2:如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?CAEBDx25-x解:设AE=xkm,根据勾股定理,得AD2+AE2=DE2BC2+BE2=CE2又∵DE
4、=CE∴AD2+AE2=BC2+BE2即:152+x2=102+(25-x)2答:E站应建在离A站10km处。∴X=10则BE=(25-x)km1510例3:在我国古代数学著作《九章算术》中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的荷花,它高出水面1尺,如果把这根荷花拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根荷花的长度各是多少?A解:设水池的深度AC为X米,则荷花高AD为(X+1)米.根据题意得:BC2+AC2=AB2∴52+X2=(X+1)225+X2=X2+2X+1X=12∴X+1=12+1=13(
5、米)答:水池的深度为12米,荷花高为13米.例4:矩形ABCD如图折叠,使点D落在BC边上的点F处,已知AB=8,BC=10,求折痕AE的长。ABCDFE解:设DE为X,X(8-X)则CE为(8-X).由题意可知:EF=DE=X,XAF=AD=1010108∵∠B=90°∴AB2+BF2=AF282+BF2=102∴BF=6∴CF=BC-BF=10-6=464∵∠C=90°∴CE2+CF2=EF2(8-X)2+42=X264-16X+X2+16=X280-16X=016X=80X=5如图,一个圆柱形纸筒的底面周长是40cm,高是30cm,一只小蚂蚁在圆筒底的A处,它想吃到上底与下底
6、面中间与A点相对的B点处的蜜糖,试问蚂蚁爬行的最短的路程是多少?◆在长30cm、宽50cm、高40cm的木箱中,如果在箱内的A处有一只昆虫,它要在箱壁上爬行到B处,至少要爬多远?CDA.B.305040图①305040CDA.B.ADCB305040CCDA.B.ACBD图②304050304050CCDA.B.图③50ADCB40303040506.做一个长、宽、高分别为50厘米、40厘米、30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明.活动3(3)变式:你还能求出S1、S2、S3之间的关系式吗?S1S2S3
此文档下载收益归作者所有