勾股定理应用的教学设计.doc

勾股定理应用的教学设计.doc

ID:48584691

大小:13.00 KB

页数:1页

时间:2020-02-26

勾股定理应用的教学设计.doc_第1页
资源描述:

《勾股定理应用的教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、勾股定理教学设计一、学情分析学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会。二、教材分析(一)本节内容分析本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同

2、的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望。(二)教学目标1、经历探索勾股定理的过程,提高学生的推理能力,体会数形结合的思想。2、理解并掌握勾股定理。3、通过对勾股定理的历史介绍及交流,让学生体会它的文化价值,提高学习数学的兴趣和信心。(三)教学重难点1、教学重点:掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。2、教学难点:勾股定理的证明 三、教学设计教学环节教师活动学生活动创设情境引入新课利用多媒体介绍在北京召开的2002年国际数学大会会标“赵爽弦图”,激发学生学习兴趣和民族自豪

3、感聆听并感受师生互动探索新知一、观察、发现、类比、猜测1、通过多媒体让学生观察毕达哥拉斯家的磁砖2、提问:是否任意直角三角形三边都符合等腰直角三角形三边的这个关系?引导学生由特殊到一般。3、由多媒体打出网格,在网格中给出任意三角形,引导学生到格点图中去验证自己的猜测。由于网格的不规则,引出用割补的方法进行计算。独立、仔细观察1分钟,然后4人一小组讨并派代表发表观点结论:a2+b2=c2猜测并回答结果小组讨论并举手回答:割补方法不一。原则:不规则经过割补变为规则。二、实验探究,证明结论为了让学生感受数形结合这一数学思想,利用多媒体,要求学生由两块面积为a2与b2组成的图形经割补变为c2

4、。↓提问:由以上过程,你能得到什么结论?由此我们得到了证明勾股定理的一种方法:等积法。学生课前准备了“L”形,要求学生亲自动手,互相协助,将“L”形进行割补。学生回答:因为是割下来再补上去,所以前后面积相等。由此得到:a2+b2=c2三、练兵之际用多媒体打出“总统证法”的图形问题:你能用此图形证明勾股定理吗?独立思考举手回答:用“等积法”可证。四、自己动手,拼出弦图让学生提前准备了四个全等的边长为a、b、c的直角三角形进行拼图。问题:你能用拼出的图形证明勾股定理吗?小组合作,进行拼图。上黑板将拼图粘贴在黑板上进行演示。总结反思点拨要位1、通过这节课,你学到了哪些知识?2、通过这节课的

5、学习过程,说说你的感受?1、学到了用“等积法”证明勾股定理及数形结合的思想。2、感受到了数学的奇妙,也感受到了古人的伟大。我们一定要将此传承下去。作业布置让学生制作一份与勾股定理有关的数学小报。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。