数系的扩充与复数的引入.doc

数系的扩充与复数的引入.doc

ID:48573454

大小:407.00 KB

页数:4页

时间:2020-02-26

数系的扩充与复数的引入.doc_第1页
数系的扩充与复数的引入.doc_第2页
数系的扩充与复数的引入.doc_第3页
数系的扩充与复数的引入.doc_第4页
资源描述:

《数系的扩充与复数的引入.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3章数系的扩充与复数的引入3.1数系的扩充教学目标1.经历数的概念的发展和数系扩充的过程,体会数学发展和创造的过程,以及数学发生、发展的客观需求。2.理解复数的基本概念以及复数相等的充要条件。教学重难点:重点:复数的基本概念.难点:虚数单位i的引进及复数的概念。教学过程一、学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相

2、反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学

3、科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数二、讲解新课:1.虚数单位:(1)它的平方等于-1,即 ;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.与-1的关系:就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-! 3.的周期性:4.复数的定义

4、:形如的数叫复数,叫复数的,叫复数的,全体复数所成的集合叫做复数集,用字母C表示* 3.复数的代数形式:复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式。4.复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.[来源:学§科§网Z§X§X§K]5.复数集与其它数集之间的关系:NZQRC.6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等[来源:学科网ZXXK]这就是说

5、,如果a,b,c,d∈R,那么a+bi=c+di 复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小。例1请说出复数的实部和虚部,有没有纯虚数?例2实数m取什么数值时,复数z=m+1+(m-1)i是:(1)实数?(2)虚数?(3)纯虚数?变式1:设复数,试求实数m的值,使(1)Z是实数,(2)z是纯虚数..例3已知(2x-1)+i=y-(3-y)i,其中x,y∈R

6、,求x与y.变式2:已知集合M=集合N=同时满足M∩N,求实数a,b.三、巩固练习:[来源1.复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足______.[来源:学&科&网Z&X&X&K]2.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},集合P={-1,3}.M∩P={3},则实数m的值为______.3.复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.4.已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是虚数;(3)z是纯虚数;(4)z=+4i.四、课堂小结

7、五、课后巩固《学习与评价》

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。