平行线的性质1.doc

平行线的性质1.doc

ID:48532850

大小:100.50 KB

页数:8页

时间:2020-02-25

平行线的性质1.doc_第1页
平行线的性质1.doc_第2页
平行线的性质1.doc_第3页
平行线的性质1.doc_第4页
平行线的性质1.doc_第5页
资源描述:

《平行线的性质1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、平行线的性质(教学设计)教材分析:1平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要2本节课的主要内容是平行线的三个性质和命题等内容,首先在研究了平行线的判定的基础上了研究平行线的性质,因为学生在研究判定是已经了解到研究平行线就是研究两条直线被第三条直线所截形成的角之间的关系,所以学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系;因此

2、,从平行线的判定与性质的关系入手引入了对平行线性质的探究,对于命题的相关知识是在学生已经解触了一些命题,如:“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”,“等式两边加同一个数,结果仍是等式“,“对顶角相等”等命题的基础上,初步了解了命题、命题的构成、真假命题、定理等内容,使学生初步接触有关形式逻辑概念和术语。3平行线的性质是本节课的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是本节课的一个难点,教学过程中可告诉学生,从角的关系得到两直线平行时判定,由已知直线平行得出角的相等或互补关系,是平

3、行线的性质。4本节课在利用两直线平行,同位角相等,来推理证明其他两条性质的过程中又一次让学生感受到转化思想在解决数学问题中的应用,在教学过程中,应注意这种思想方法的渗透,有意识的让学生认识整理,使学生在今后的不断训练中掌握这种方法。教学目标:知识技能:1.掌握平行线的三个性质2.会用平行线的性质进行有关的简单推理和计算3.通过对比,理解平行线的性质和判定的区别过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力情感、态度与价值观:让学生在活动中体验探索

4、、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度教学重点:平行线的三个性质的探索教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理教具准备:多媒体课件、量角器、剪刀等教学过程:一、情境探究,引入新课如图,要设计一个弯形管道,求管道,那么如何设计的角度呢?也就是说,如果给你两条平行直线,你能够得到什么?这就是我们此节课所学-----5.3平行线的性质(板书)二、动手实践,探索规律在练习本上画两条平行线,再画直线与直线相交(如下图)指出图中同位角、内错角、同旁内角?思考:你能用你自己

5、的方法比较一下对应的同位角、内错角、同旁内角之间的数量关系吗?(两种方法:一是度量,二是裁剪)归纳:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)(此处教师要用符号语言加以说明)问:如果两条直线不平行,也被第三条直线所截,同位角、内错角还相等吗?同样,同旁内角还互补吗?(只有在两直线平行的条件下才有:同位角、内错角相等,同旁内角互补。并不是所有的同位角、内错角都相等,同旁内角都互

6、补)三、议一议、促进理解1.你能利用“两直线平行,同位角相等”来说明“两直线平行,内错角相等”以及“两直线平行,同旁内角互补”成立的理由吗?(重点强调:符号语言的写法)2.你能谈谈平行线的性质和判定的区别?已知结论判定同位角相等两直线平行内错角相等同旁内角互补性质两直线平行同位角相等内错角相等同旁内角互补归纳:判定:角的关系线的关系性质:线的关系角的关系四、组间、增进合作1、如图(1),直线,,那么∠2,∠3,∠4各是多少度?2、如图(2),是上一点,是上一点,,,,求的度数3、如图(3),是一条直线,,求的度数4、如图(4),点分

7、别在的边上,且(1)试求的度数(2)如果,那么与平行吗?图(1)图(2)图(3)图(4)五、小结拓展、知识汇总1.学生自我归纳2.教师加以强调六、学后反思通过学习,你能不能解决我们课前提出的情境问题呢?七、作业布置、巩固所学P234、5八、板书设计:(略)【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。【教学过程】一、复习回顾(设计说明:平行线的判定定理与性质定理是互逆的,对初

8、学者来说易将他们混淆,因此,复习平行线的判定为后面性质与判定的比较做好准备,同时利用性质定利用判定定理的互逆关系自然引入新课。)问题:如何用同位角、内错角、同旁内角来判定两条直线是否平行?反过来:,如果两条直线平行,那么同位角、内错角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。