欢迎来到天天文库
浏览记录
ID:48520646
大小:1.21 MB
页数:9页
时间:2020-01-23
《弧、弦、圆心角.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1.3弧、弦、圆心角的关系1·圆心角:我们把顶点在圆心的角叫做圆心角.OBA一、概念2根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等,OA=OA′,OB=OB′,∴点A与A′重合,B与B′重合.·OAB探究·OABA′B′A′B′二、∴重合,AB与A′B′重合.如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?3在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;在同圆或等圆中,相等的弦所对的圆心角
2、______,所对的优弧和劣弧分别_________.弧、弦与圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.相等相等相等相等同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.三、定理4如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那么___________,_________________.(2)如果,那么____________,_____________.(3)如果∠AOB=∠COD,那么_____________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于
3、F,OE与OF相等吗?为什么?·CABDEFOAB=CDAB=CD四、练习OE﹦OF证明:∵OE⊥ABOF⊥CD∵AB﹦CD∴AE﹦CF∵OA﹦OC∴RT△AOE≌RT△COF∴OE﹦OF5证明:∴AB=AC.又∠ACB=60°,∴△ABC是等边三角形,即AB=BC=CA.∴∠AOB=∠BOC=∠AOC.·ABCO五、例题∵例1如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠AOC6如图,AB是⊙O的直径,∠COD=35°,求∠AOE的度数.·AOBCDE解:六、练习∵7七、思考如图,已知AB、CD为⊙O的两条弦,AD=BC,求证AB=CD⌒⌒8如
4、图,已知OA、OB是⊙O的半径,点C为AB的中点,M、N分别为OA、OB的中点,求证:MC=NC⌒9
此文档下载收益归作者所有