单因素方差分析.ppt

单因素方差分析.ppt

ID:48502606

大小:365.50 KB

页数:30页

时间:2020-01-22

单因素方差分析.ppt_第1页
单因素方差分析.ppt_第2页
单因素方差分析.ppt_第3页
单因素方差分析.ppt_第4页
单因素方差分析.ppt_第5页
资源描述:

《单因素方差分析.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、单因素方差分析什么是方差分析?检验多个总体均值是否相等通过对各观察数据误差来源的分析来判断多个总体均值是否相等什么是方差分析?(一个例子)表8-1该饮料在五家超市的销售情况超市无色粉色橘黄色绿色1234526.528.725.129.127.231.228.330.827.929.627.925.128.524.226.530.829.632.431.732.8【例8.1】某饮料生产企业研制出一种新型饮料。饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。现从地理位置相似、经营规模相仿的五家超级市场上

2、收集了前一时期该饮料的销售情况,见表8-1。试分析饮料的颜色是否对销售量产生影响。什么是方差分析?(例子的进一步分析)检验饮料的颜色对销售量是否有影响,也就是检验四种颜色饮料的平均销售量是否相同设1为无色饮料的平均销售量,2粉色饮料的平均销售量,3为橘黄色饮料的平均销售量,4为绿色饮料的平均销售量,也就是检验下面的假设H0:1234H1:1,2,3,4不全相等检验上述假设所采用的方法就是方差分析方差分析的基本思想和原理(几个基本概念)因素或因子所要检验的对象称为因子要分析饮料的颜色对销售量是否有影响,颜色是要检验的因素或因子水平因素的具体表现称为

3、水平A1、A2、A3、A4四种颜色就是因素的水平观察值在每个因素水平下得到的样本值每种颜色饮料的销售量就是观察值方差分析的基本思想和原理(几个基本概念)试验这里只涉及一个因素,因此称为单因素四水平的试验总体因素的每一个水平可以看作是一个总体比如A1、A2、A3、A4四种颜色可以看作是四个总体样本数据上面的数据可以看作是从这四个总体中抽取的样本数据单因素方差分析的数据结构观察值(j)因素(A)i水平A1水平A2…水平Ak12::nx11x12…x1kx21x22…x2k::::::::xn1xn2…xnk方差分析中的基本假定每个总体都应服从正态分布对于因素的每一个水平,其观察值

4、是来自服从正态分布总体的简单随机样本比如,每种颜色饮料的销售量必需服从正态分布各个总体的方差必须相同对于各组观察数据,是从具有相同方差的总体中抽取的比如,四种颜色饮料的销售量的方差都相同观察值是独立的比如,每个超市的销售量都与其他超市的销售量独立方差分析中的基本假定在上述假定条件下,判断颜色对销售量是否有显著影响,实际上也就是检验具有同方差的四个正态总体的均值是否相等的问题如果四个总体的均值相等,可以期望四个样本的均值也会很接近四个样本的均值越接近,我们推断四个总体均值相等的证据也就越充分样本均值越不同,我们推断总体均值不同的证据就越充分提出假设一般提法H0:m1=m2=…=

5、mk(因素有k个水平)H1:m1,m2,…,mk不全相等对前面的例子H0:m1=m2=m3=m4颜色对销售量没有影响H0:m1,m2,m3,m4不全相等颜色对销售量有影响方差分析的基本思想和原理(两类方差)组内方差因素的同一水平(同一个总体)下样本数据的方差比如,无色饮料A1在5家超市销售数量的方差组内方差只包含随机误差组间方差因素的不同水平(不同总体)下各样本之间的方差比如,A1、A2、A3、A4四种颜色饮料销售量之间的方差组间方差既包括随机误差,也包括系统误差构造检验的统计量(计算水平的均值)假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本

6、的全部观察值总和除以观察值的个数计算公式为式中:ni为第i个总体的样本观察值个数xij为第i个总体的第j个观察值构造检验的统计量(计算全部观察值的总均值)全部观察值的总和除以观察值的总个数计算公式为构造检验的统计量(前例计算结果)表8-2四种颜色饮料的销售量及均值超市(j)水平A(i)无色(A1)粉色(A2)橘黄色(A3)绿色(A4)1234526.528.725.129.127.231.228.330.827.929.627.925.128.524.226.530.829.632.431.732.8合计136.6147.8132.2157.3573.9水平均值观察值个数x

7、1=27.32n1=5x2=29.56n2=5x3=26.44n3=5x4=31.46n4=5总均值x=28.695构造检验的统计量(计算总离差平方和SST)全部观察值与总平均值的离差平方和反映全部观察值的离散状况其计算公式为前例的计算结果:SST=(26.5-28.695)2+(28.7-28.695)2+…+(32.8-28.695)2=115.9295构造检验的统计量(计算组内误差项平方和SSE)每个水平或组的各样本数据与其组平均值的离差平方和反映每个样本各观察值的离散状况,又称组内离差平方和该平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。