欢迎来到天天文库
浏览记录
ID:48492354
大小:263.00 KB
页数:18页
时间:2020-01-18
《数学人教版八年级上册三角形的外角.2.2 三角形的外角.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、11.2与三角形有关的角11.2.2三角形的外角第十一章三角形课件说明本节课内容是从三角形的内角的概念迁移到三角形的外角的概念,进而研究三角形的外角的性质,再通过例题进行巩固运用.课件说明教学目标※【知识与技能】1.理解三角形的外角.2.掌握三角形外角的性质,能利用三角形外角的性质解决问题.【过程与方法】学会运用简单的说理来计算三角形相关的角.【情感态度】培养学生的实践能力和观察总结能力,体验主动探究的成功和快乐.【教学重点】三角形的外角和三角形外角的性质.【教学难点】理解三角形的外角.理解三角形的外角的概念问题1在△ABC中,∠A=75°,∠B=4
2、0°,∠C等于多少度?ABC理解三角形的外角的概念问题2如图,把△ABC的一边BC延长,得到∠ACD.这个角还是三角形的内角吗?概念:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.ABCD探索与证明三角形的外角的性质∠ACD(外角)+∠ACB(相邻的内角)=180°.ABCD问题3如图,∠ACD与∠ACB的位置是怎样的?∠ACD与∠ACB有什么数量关系?探索与证明三角形的外角的性质如图,∵ ∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B.ABCD问题4如图,∠ACD与∠A,∠B的位置是怎样的?∠ACD与∠A
3、,∠B的大小有什么关系?你能证明你的结论吗?探索与证明三角形的外角的性质三角形内角和定理的推论:三角形的一个外角等于与它不相邻的两个内角的和.推论是由定理直接推出的结论,和定理一样,推论可以作为进一步推理的依据.∠C∠3∠DAC∠4课堂练习练习1如图,口答:(1)∠1=+;(2)∠2=+.BACD1234课堂练习练习2如图,说出图形中∠1的度数.图中∠1的度数依次为:90°,85°,95°,45°.(1)(2)(3)(4)30°60°135°60°145°50°130°15°1课堂练习练习3如图,说出图形中∠1和∠2的度数:(1)(2)(3)111222
4、60°80°30°40°40°运用三角形的外角的性质例如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?解法一:∵ ∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=(∠2+∠3)+(∠1+∠3)+(∠1+∠2)ABFCDE123运用三角形的外角的性质例如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?ABFCDE123解法一:=2(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴ ∠BAE+∠CBF+∠ACD=2×180°=360°.运用三角形的外角的性质例
5、如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?解法二:由∠1+∠BAE=180°,∠2+∠CBF=180°,∠3+∠ACD=180°,得∠1+∠2+∠3+∠BAE+∠CBF+∠ACD=540°.ABFCDE123运用三角形的外角的性质例如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?ABFCDE123解法二:由∠1+∠2+∠3=180°,得∠BAE+∠CBF+∠ACD=540°-180°=360°.40º40º⌒课堂练习ABDC练习 如图,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC=80°,∠B
6、AC=70°.求:(1)∠B的度数;(2)∠C的度数.(1)本节课学习了哪些主要内容?(2)怎样探索并证明“三角形的一个外角等于与它不相邻的两个内角的和”?(3)你用了哪几种方法解答例题?课堂小结布置作业教科书习题11.2第6、8题.
此文档下载收益归作者所有