数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt

数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt

ID:48467654

大小:261.50 KB

页数:20页

时间:2020-01-18

数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt_第1页
数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt_第2页
数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt_第3页
数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt_第4页
数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt_第5页
资源描述:

《数学人教版八年级上册角平分线的性质.3 角的平分线的性质课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、旧知回顾角的平分线的定义是什么?旧知回顾已知一个角你会将它平分吗?说一说,你有哪些方法?有没有既简单又准确的方法。ABO要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.已知AB=AD.将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.BEDCA····动脑思考把简易平分角的仪器放在角的两边时,平分角的仪器两边AB与AD相等,从几何作图角度怎么画?BA····DC动脑思考BC=DC从几何作图角度怎么画?BA····DC角平分线的画法(2)分别以M,N为圆心.大于MN一半

2、的长为半径作弧.两弧在∠AOB的内部交于C.(3)作射线,则射线OC即为所求ABOMNC(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.想一想:为什么OC是角平分线呢?已知:OM=ON,MC=NC.求证:OC平分∠AOB.证明:连接CM,CN在△OMC和△ONC中,OM=ON,MC=NC,OC=OC,∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC即:OC平分∠AOBABMNCO8操作:用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.9问题1:第

3、一次的折痕和角有什么关系?为什么?问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?10归纳:角平分线上的点到角的两边的距离相等题设:一个点在一个角的平分线上结论:它到角的两边的距离相等已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E.求证:PD=PE.11已知:如图,OP是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E求证:PD=PE证明:∵∠1=∠2,OP=OP∠PDO=∠PEO=90°∴⊿PDO≌⊿PEO(AAS)∴PD=PE(全等三角形的对应边相等)AOBDPEC1212角

4、平分线的性质定理定理角的平分线上的点到这个角的两边的距离相等。定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。应用定理的书写格式:OP是的平分线PD=PE(在角的平分线上的点到这个角的两边的距离相等。)∵推理的理由有三个,必须写完全,不能少了任何一个。AOBDPE判断正误,并说明理由:(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.AOBPEF图2图3AOBPEAOBPEF图1(3)如图3,在∠AOB

5、的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.14已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,PD=PE。求证:点P在∠AOB的平分线上。证明:在Rt⊿ODP和Rt⊿OEP中,∠ODP=∠OEP=90°OP=OP,PD=PERt⊿OPD≌Rt⊿OPE(HL)角的内部到一个角的两边的距离相等的点,在这个角的平分线上。定理定理2的应用书写格式:OP是的平分线PD=PE(角的内部到一个角的两边的距离相等的点,在这个角的平分线上)∵用途:判定一条射线是角平分线知识运用如图,开发区一个工厂,在公路西侧,到公路的距离与到河岸的距离

6、相等,并且与河上公路桥较近桥头的距离为500米。你能尝试确定工厂的位置吗?并说明理由。北比例尺1:20000∵到公路的距离与到河岸的距离相等∴工厂在河岸与公路的角平分线上(到一个角的两边的距离相等的点,在这个角的平分线上)以角的顶点为端点在角平分线上取一段等于2.5㎝则另一点就是工厂的位置。例题讲解例已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.证明:过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F∵BM是△ABC的角平分线,点P在BM上∴PD=PE(角平分线上的点到角的两边的距离相等)同理PE

7、=PF.∴PD=PE=PF.即点P到边AB、BC、CA的距离相等DEFABCPMN课堂小结3角的平分线的性质定理1,定理2是证明角相等,线段相等的新途径。定理1多用于证明线段相等,定理2多用于证明角相等或点在角平分线上。1角的平分线上的点到这个角的两边的距离相等。2角的内部到一个角的两边距离相等的点,在这个角的平分线上。作业这节课我们学习到这里,再见!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。