学案——直线的倾斜角与斜率、直线的方程.doc

学案——直线的倾斜角与斜率、直线的方程.doc

ID:48439497

大小:127.50 KB

页数:10页

时间:2020-01-28

学案——直线的倾斜角与斜率、直线的方程.doc_第1页
学案——直线的倾斜角与斜率、直线的方程.doc_第2页
学案——直线的倾斜角与斜率、直线的方程.doc_第3页
学案——直线的倾斜角与斜率、直线的方程.doc_第4页
学案——直线的倾斜角与斜率、直线的方程.doc_第5页
资源描述:

《学案——直线的倾斜角与斜率、直线的方程.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、直线的倾斜角与斜率、直线的方程一、直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π)_.2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k==.二、直线方程的形式及适用条件名称几何条件方 程局限性点斜式过点(x0,y0),斜

2、率为ky-y0=k(x-x0)不含垂直于x轴的直线斜截式斜率为k,纵截距为by=kx+b不含垂直于x轴的直线两点式过两点(x1,y1),(x2,y2),(x1≠x2,y1≠y2)=不包括垂直于坐标轴的直线截距式在x轴、y轴上的截距分别为a,b(a,b≠0)+=1不包括垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不全为0)1.求直线方程时要注意判断直线斜率是否存在,每条直线都有倾斜角,但不一定每条直线都存在斜率.2.由斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.用截距式写方程时,应先判断截距是否为0,若不确定,则需

3、要分类讨论.4.求倾斜角的取值范围的一般步骤:(1)求出斜率k=tanα的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围.练习:1.(教材习题改编)直线x+y+m=0(m∈k)的倾斜角为(  )A.30°          B.60°C.150°D.120°解析:选C 由k=tanα=-,α∈[0,π)得α=150°.2.(教材习题改编)已知直线l过点P(-2,5),且斜率为-,则直线l的方程为(  )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=0解析:选A 由y

4、-5=-(x+2),得3x+4y-14=0.3.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为(  )A.1B.4C.1或3D.1或4解析:选A 由1=,得m+2=4-m,m=1.4.(2012·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析:kAC==1,kAB==a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案:45.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程为________.解析:由已知得直线l的斜率为k=-.所以l的方程为y-2=-(x

5、+1),即3x+2y-1=0.答案:3x+2y-1=0直线的倾斜角与斜率1.(2012·岳阳模拟)经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为,则y=(  )A.-1           B.-3C.0D.22.(2012·苏州模拟)直线xcosθ+y+2=0的倾斜角的范围是________.[自主解答] (1)tan===y+2,因此y+2=-1.y=-3.(2)由题知k=-cosθ,故k∈,结合正切函数的图象,当k∈时,直线倾斜角α∈,当k∈时,直线倾斜角α∈,故直线的倾斜角的范围是∪.[答案] (1)B (2)∪3.(2012·哈尔

6、滨模拟)函数y=asinx-bcosx的一条对称轴为x=,则直线l:ax-by+c=0的倾斜角为(  )A.45°B.60°C.120°D.135°解析:选D 由函数y=f(x)=asinx-bcosx的一条对称轴为x=知,f(0)=f,即-b=a,则直线l的斜率为-1,故倾斜角为135°.4.(2012·金华模拟)已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是(  )A.B.(-∞,-2]C.(-∞,-2]∪D.解析:选D 由题意知直线l恒过定点P(2,1),如右图.若l与线段AB相交,则kPA≤

7、k≤kPB.∵kPA=-2,kPB=,∴-2≤k≤.直线方程5.过点(1,0)且与直线x-2y-2=0平行的直线方程是________________.6.(2012·东城模拟)若点P(1,1)为圆(x-3)2+y2=9的弦MN的中点,则弦MN所在直线的方程为______________.[自主解答] (1)设所求直线方程为x-2y+m=0,由直线经过点(1,0),得1+m=0,m=-1.则所求直线方程为x-2y-1=0.(2)由题意得,×kMN=-1,所以kMN=2,故弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.[答案] (1)x

8、-2y-1=0 (2)2x-y-1=07.(2012·龙岩调研)已知△ABC中,A(1,-4)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。