资源描述:
《天津专用2020届高考数学一轮复习考点规范练34直线、平面垂直的判定与性质含解析新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点规范练34 直线、平面垂直的判定与性质一、基础巩固1.设l是直线,α,β是两个不同的平面,则下列说法正确的是( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β2.设α为平面,a,b为两条不同的直线,则下列叙述正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α3.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( )A.平面ABC⊥平面ABDB.平面
2、ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE4.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确命题的个数是( )A.1B.2C.3D.45.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( ) A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BDCD.平面ABC⊥平面BDC6.
3、如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在的平面,那么( )A.PA=PB>PCB.PA=PB4、同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题: (用序号表示). 10.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.11.如图,已知在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为菱形,AD=2,∠DAB=60°,E为AB的中点.(1)证明:平面PCD⊥平面PDE;(2)若PD=3
5、AD,求点E到平面PBC的距离.12.如图①,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1-BCDE.图①图②(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为362,求a的值.二、能力提升13.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.
6、若α∥β,m⊂α,n⊂β,则m∥n14.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部15.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC16.如图,在直三棱柱ABC-A
7、1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1与DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为 . 17.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AD=AP=2,AB=27,E为棱PD的中点.(1)求证:PD⊥平面ABE;(2)求四棱锥P-ABCD外接球的体积.三、高考预测18.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童ABCD-A1B1C
8、1D1的组合体中,AB=AD,A1B1=A1D1.(台体体积公式:V=13(S'