欢迎来到天天文库
浏览记录
ID:48342350
大小:4.70 MB
页数:44页
时间:2019-10-26
《2014年高考数学文科(高考真题+模拟新题)分类汇编:B单元-函数与导数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学B单元函数与导数B1 函数及其表示14、、[2014·安徽卷]若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=______、14. [解析]由题易知f+f=f+f=-f-f=-+sin=.2、、[2014·北京卷]下列函数中,定义域是R且为增函数的是( )A、y=e-xB、y=x3C、y=lnxD、y=
2、x
3、2、B [解析]由定义域为R,排除选项C,由函数单调递增,排除选项A,D.21、、、[2014·江西卷]将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789
4、101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率、(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n
5、h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值、21、解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.(2)F(n)=(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,
6、b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}、当n=9时,p(9)=0.当n=90时,p(90)===.当n=10k+9(1≤k≤8,k∈N*)时,p(n)===,由y=关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=.又<,所以当n∈S时,p(n)的最大值为.3、[2014·山东
7、卷]函数f(x)=的定义域为( )A、(0,2)B、(0,2]C、(2,+∞)D、[2,+∞)3、C [解析]若函数f(x)有意义,则log2x-1>0,∴log2x>1,∴x>2.B2反函数5、[2014·全国卷]函数y=ln(+1)(x>-1)的反函数是( )A、y=(1-ex)3(x>-1)B、y=(ex-1)3(x>-1)C、y=(1-ex)3(x∈R)D、y=(ex-1)3(x∈R)5、D [解析]因为y=ln(+1),所以x=(ey-1)3.因为x>-1,所以y∈R,所以函数y=ln(+1)(x>-1)的反函数是y=(ex-1)3(x∈R)、B3函数的单调性与最值2、、[2
8、014·北京卷]下列函数中,定义域是R且为增函数的是( )A、y=e-xB、y=x3C、y=lnxD、y=
9、x
10、2、B [解析]由定义域为R,排除选项C,由函数单调递增,排除选项A,D.4、、[2014·湖南卷]下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A、f(x)=B、f(x)=x2+1C、f(x)=x3D、f(x)=2-x4、A [解析]由偶函数的定义,可以排除C,D,又根据单调性,可得B不对、19、、、、[2014·江苏卷]已知函数f(x)=ex+e-x,其中e是自然对数的底数、(1)证明:f(x)是R上的偶函数、(2)若关于x的不等式mf(x)≤e-x+m-
11、1在(0,+∞)上恒成立,求实数m的取值范围、(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)0),则t>1,所以m≤-=-对任意t>1成立、因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln2时等号成立、因此实数m的取值范围是.(3)令函数g(x)=ex+-a(-x3+3
12、x),则g′(x)=ex-+3a(x2-1)、当x≥1时,ex->0,x2-1≥0.又a>0,故g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使ex0+e-x0-a(-x+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即a>.令函数h(x)=x-(e-1)lnx-1,则h′(x)=1-.令h
此文档下载收益归作者所有