1、4.4 简单的三角恒等变换A组 基础题组1.1-tan275°tan75°的值为( )A.23B.233C.-23D.-233答案: C 原式=2tan150°=-23.2.若cos2θ=13,则sin4θ+cos4θ的值为( )A.1318B.1118C.59D.1答案: C ∵cos2θ=13,∴sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-12sin22θ=1-12(1-cos22θ)=1-12×1-19=59.3.已知tanθ2=23,则1-cosθ+sinθ1+cosθ+sinθ的值为( )A.23B.-23C.32
2、D.-32答案: A ∵tanθ2=23,∴1-cosθ+sinθ1+cosθ+sinθ=2sin2θ2+2sinθ2cosθ22cos2θ2+2sinθ2cosθ2=tanθ2=23. 4.函数f(x)=2cosxsinx-π3的最大值为( )A.1-32B.1+32C.12D.2答案: A ∵f(x)=2cosx12sinx-32cosx=12sin2x-32(1+cos2x)=sin2x-π3-32,∴f(x)max=1-32.5.(2019温州中学月考)若cos(α+β)cos(α-β)=13,则cos2α-sin2β=(
3、 )A.-23B.-13C.13D.23答案: C ∵cos(α+β)cos(α-β)=13,∴cos2αcos2β-sin2αsin2β=13,∴cos2α(1-sin2β)-(1-cos2α)sin2β=cos2α-cos2αsin2β-sin2β+cos2αsin2β=cos2α-sin2β=13.6.4sin80°-cos10°sin10°等于( )A.3B.-3C.2D.22-3答案: B 4sin80°-cos10°sin10°=4sin80°sin10°-cos10°sin10°=2sin20°-cos10°sin10°=2sin(30°-10°)-c