全等三角形的判定(边角边).ppt

全等三角形的判定(边角边).ppt

ID:48248351

大小:262.50 KB

页数:18页

时间:2020-01-18

全等三角形的判定(边角边).ppt_第1页
全等三角形的判定(边角边).ppt_第2页
全等三角形的判定(边角边).ppt_第3页
全等三角形的判定(边角边).ppt_第4页
全等三角形的判定(边角边).ppt_第5页
资源描述:

《全等三角形的判定(边角边).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.2三角形全等的判定第十二章全等三角形导入新课讲授新课当堂练习课堂小结第2课时“边角边”情境引入学习目标1.探索并正确理解三角形全等的判定方法“SAS”.(重点)2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用.(重点)3.了解“SSA”不能作为两个三角形全等的条件.(难点)1.若△AOC≌△BOD,则有对应边:AC=,AO=,CO=,对应角有:∠A=,∠C=,∠AOC=.ABOCD导入新课BDBODO∠B∠D∠BOD复习引入2.填空:已知:AC=AD,BC=BD,求证:AB是∠

2、DAC的平分线.AC=AD(),BC=BD(),=(),∴△ABC≌△ABD().∴∠1=∠2().∴AB是∠DAC的平分线(角平分线定义).ABCD12已知已知SSS证明:在△ABC和△ABD中,ABAB公共边全等三角形的对应角相等讲授新课三角形全等的判定(“边角边”定理)一作图探究尺规作图画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即使两边和它们的夹角对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ABCABCA′DEB′C′作法:(1)画∠D

3、A'E=∠A;(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;(3)连接B'C'.在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS).文字语言:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).知识要点“边角边”判定方法几何语言:AB=A′B′,∠A=∠A′,AC=A′C′,ABCA′B′C′必须是两边“夹角”例1如果AB=CB,∠ABD=∠CBD,那么△ABD和△CBD全等吗?分析:△ABD≌△CBD.边:角:边:AB=CB(已

4、知),∠ABD=∠CBD(已知),?ABCD(SAS)BD=BD(公共边).典例精析ABCD证明:在△ABD和△CBD中,AB=CB(已知),∠ABD=∠CBD(已知),BD=BD(公共边),∴△ABD≌△CBD(SAS).想一想:现在例1的已知条件不改变,而问题改变成:问AD=CD吗?BD平分∠ADC吗?由△ABD≌△CBD可得AD=CD(全等三角形的对应边相等),BD平分∠ADC(全等三角形的对应角相等,∠ADB=∠CDB).例2如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可

5、以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?C·AEDB分析:如果能证明△ABC≌△DEC,就可以得出AB=DE.由题意知,△ABC和△DEC具备“边角边”的条件.证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE(全等三角形的对应边相等).AC=DC(已知),∠1=∠2(对顶角相等),CB=EC(已知),C·AEDB12证明线段相等或者角相等时,常常通过证明它们是全等

6、三角形的对应边或对应角来解决.归纳“SSA”不能作为三角形全等的判定定理二想一想:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?BACD这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.归纳△ABC和△ABD满足AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.当堂练习1.下列图形中有没有全等三角形,并说明全等的理由.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°甲与丙全等,SAS.2

7、.在下列推理中填写需要补充的条件,使结论成立.(已知),=∠A=∠A(公共角),=ADCBE∴△AEC≌△ADB().在△AEC和△ADB中,ABACADAESAS注意:“SAS”中的角必须是两边的夹角,“A”必须在中间..3.已知:如图,AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.证明:∵∠1=∠2(已知)∴∠1+∠DBC=∠2+∠DBC(等式的性质),即∠ABC=∠DBE.在△ABC和△DBE中,AB=DB(已知),∠ABC=∠DBE(已证),CB=EB(已知),∴△ABC≌△DB

8、E(SAS).∴∠A=∠D(全等三角形的对应角相等).1A2CBDE4.如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.FABDCE证明:∵AD//BC,∴∠A=∠C,∵AE=CF,在△AFD和△CEB中,AD=CB∠A=∠CAF=CE∴△AFD≌△CEB(SAS).∴AE+EF=CF+EF,即AF=CE.(已知),(已证),(已证),课堂小结边角边内容有两边及夹角对应相等的两个三角形全等(简写成“SAS”)应用为证明线段和角相等提供了新的证法注意1.已知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。