欢迎来到天天文库
浏览记录
ID:48220131
大小:106.50 KB
页数:2页
时间:2020-01-23
《13.3.1 等腰三角形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.3.1 等腰三角形第1课时 教学目标1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.教学重难点重点:等腰三角形的性质及应用.难点:等腰三角形的性质的证明.教学过程一、情境导入教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰
2、三角形.二、探究新知(一)活动1:如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?1.学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.2.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.(二)活动2:把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角 从上表中你能发现等腰三角形具有什么性质吗?1.学生活动:学生经过观
3、察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.2.教师活动:引导学生归纳.性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).(三)活动3:你能用所学知识验证上述性质吗?如图,在△ABC中,AB=AC.求证:∠B=∠C.证明:作BC边上的中线AD,如图.在△ABD和△ACD中,所以△ABD≌△ACD(SSS),所以∠B=∠C.三、应用提高例1 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度
4、数.1.学生活动:小组合作,分组讨论、交流.2.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)四、课堂小结(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).五.布置作业:教材习题13.3第1,3,7题.六.课后反思本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象
5、直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.
此文档下载收益归作者所有