2019年高考数学真题分类汇编10.2双曲线及其性质理.doc

2019年高考数学真题分类汇编10.2双曲线及其性质理.doc

ID:48206914

大小:58.50 KB

页数:4页

时间:2019-11-16

2019年高考数学真题分类汇编10.2双曲线及其性质理.doc_第1页
2019年高考数学真题分类汇编10.2双曲线及其性质理.doc_第2页
2019年高考数学真题分类汇编10.2双曲线及其性质理.doc_第3页
2019年高考数学真题分类汇编10.2双曲线及其性质理.doc_第4页
资源描述:

《2019年高考数学真题分类汇编10.2双曲线及其性质理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学真题分类汇编10.2双曲线及其性质理考点一 双曲线的标准方程1.(xx天津,5,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为(  )A.-=1B.-=1C.-=1D.-=1答案 A考点二 双曲线的几何性质2.(xx课标Ⅰ,4,5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为(  )A.B.3C.mD.3m答案 A3.(xx山东,10,5分)已知a>b>0,椭圆C1

2、的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为(  )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0答案 A4.(xx广东,4,5分)若实数k满足00,b>0)的左、右焦点,双曲线上存在一点P使得

3、PF1

4、+

5、PF2

6、=3b,

7、PF1

8、·

9、PF2

10、=ab,则该双曲线的离心率为(  )

11、A.B.C.D.3答案 B6.(xx大纲全国,9,5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若

12、F1A

13、=2

14、F2A

15、,则cos∠AF2F1=(  )A.B.C.D.答案 A7.(xx北京,11,5分)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为    ;渐近线方程为    . 答案 -=1;y=±2x8.(xx浙江,16,4分)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足

16、PA

17、=

18、PB

19、,

20、则该双曲线的离心率是    . 答案 9.(xx福建,19,13分)已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.解析 解法一:(1)因为双曲线E的渐近线分别为y=2x,y=-2x,所以=2,所以=2,故c=a,从而双

21、曲线E的离心率e==.(2)由(1)知,双曲线E的方程为-=1.设直线l与x轴相交于点C.当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则

22、OC

23、=a,

24、AB

25、=4a,又因为△OAB的面积为8,所以

26、OC

27、·

28、AB

29、=8,因此a·4a=8,解得a=2,此时双曲线E的方程为-=1.若存在满足条件的双曲线E,则E的方程只能为-=1.以下证明:当直线l不与x轴垂直时,双曲线E:-=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.记A(x1,y1),B(x2,y2).由得y1=,

30、同理得y2=.由S△OAB=

31、OC

32、·

33、y1-y2

34、得,·=8,即m2=4

35、4-k2

36、=4(k2-4).由得(4-k2)x2-2kmx-m2-16=0.因为4-k2<0,所以Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),又因为m2=4(k2-4),所以Δ=0,即l与双曲线E有且只有一个公共点.因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为-=1.解法二:(1)同解法一.(2)由(1)知,双曲线E的方程为-=1.设直线l的方程为x=my+t,A(x1,y1),B(x2

37、,y2).依题意得-

38、OC

39、·

40、y1-y2

41、=8,得

42、t

43、·=8,所以t2=4

44、1-4m2

45、=4(1-4m2).由得(4m2-1)y2+8mty+4(t2-a2)=0.因为4m2-1<0,直线l与双曲线E有且只有一个公共点当且仅当Δ=64m2t2-16(4m2-1)(t2-a2)=0,即4m2a2+t2-a2=0,即4m2a2+4(1-4m2)-a2=0,即(1-4m2)(a2-4)=0,所以a2=4,因此,存在总与l

46、有且只有一个公共点的双曲线E,且E的方程为-=1.解法三:(1)同解法一.(2)当直线l不与x轴垂直时,设直线l的方程为y=kx+m,A(x1,y1),B(x2,y2).依题意得k>2或k<-2.由得(4-k2)x2-2kmx-m2=0,因为4-k2<0,Δ>0,所以x1x2=,又因为△OAB的面积为8,所以

47、OA

48、·

49、OB

50、·sin∠AOB=8,又易知sin∠AOB=,所以·=8,化简得x1x2=4.所以=4,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。