资源描述:
《2019-2020年高考数学一轮复习第九章平面解析几何第八节直线与圆锥曲线夯基提能作业本文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学一轮复习第九章平面解析几何第八节直线与圆锥曲线夯基提能作业本文1.直线mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点个数是( )A.至多一个B.2C.1D.02.已知经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q,则k的取值范围是( )A.B.∪C.(-,)D.(-∞,-)∪(,+∞)3.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线( )A.有且只有一条B.有且只有两条C.有且只有三条D.有且只有四条4.经过椭圆+y2=1的一个焦点作倾斜角
2、为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则·等于( )A.-3B.-C.-或-3D.±5.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是( )A.4B.3C.4D.86.已知抛物线x2=ay与直线y=2x-2相交于M,N两点,若MN中点的横坐标为3,则此抛物线方程为 . 7.已知椭圆C:+=1(a>b>0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2,则椭圆C的方程为 . 8.设双曲线-=1的右顶点为A,右焦点为F.过点F且平行于双曲线的一
3、条渐近线的直线与双曲线交于点B,则△AFB的面积为 . 9.椭圆C:+=1(a>b>0)过点,离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点.(1)求椭圆C的方程;(2)当△F2AB的面积为时,求直线的方程.10.在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其他公共点?说明理由.B组 提升题组11.设抛物线E:y2=4x的焦点为F,直线l过F且与E交于A,B两点.若
4、AF
5、=3
6、BF
7、,则l的方程为( )A
8、.y=x-1或y=-x+1B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)12.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若·=0,则k= . 13.(xx北京朝阳一模)已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(-2,0),F2(2,0),离心率为.过点F2的直线l(斜率不为0)与椭圆C交于A、B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.(1)求椭圆C的方程;(2)当四边形MF1NF2为矩形时,求直线l的方程.14.(xx北京丰台一模)
9、已知椭圆C:+=1(a>b>0)过点A(2,0),离心率e=,斜率为k(02,∴m2+n2<4,∴+<+=1-m2<1,∴点(m,n)在椭圆+=1的内部,∴过点(m,n)的直线与椭圆+=1的交点有2个.2.B 由题意得,直线l的方程为y=kx+,代入椭圆方程得+(kx+
10、)2=1,整理得x2+2kx+1=0.直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4=4k2-2>0,解得k<-或k>,即k的取值范围是∪.故选B.3.B ∵2p=2,
11、AB
12、=x1+x2+p,∴
13、AB
14、=3>2p,故这样的直线有且只有两条.4.B 依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,∴·=-,同理,直线l经过椭圆的左焦点时,也有·=-.5.C ∵y2=4x,∴F(1,0),准线l:x=-1,∴过焦点F且斜率为的
15、直线l1的方程为y=(x-1),与y2=4x联立,解得或由题易知A(3,2),∴AK=4,∴S△AKF=×4×2=4.6.答案 x2=3y解析 设点M(x1,y1),N(x2,y2).由消去y,得x2-2ax+2a=0,所以==3,即a=3,因此所求的抛物线方程是x2=3y.7.答案 +=1解析 由题意得解得∴椭圆C的方程为+=1.8.答案 解析 易知c=5,取过点F且平行于一条渐近线的直线方程为y=(x-5),即4x-3y-20=0,联立直线