定积分说课课件 (1).ppt

定积分说课课件 (1).ppt

ID:48085216

大小:2.06 MB

页数:29页

时间:2020-01-12

定积分说课课件 (1).ppt_第1页
定积分说课课件 (1).ppt_第2页
定积分说课课件 (1).ppt_第3页
定积分说课课件 (1).ppt_第4页
定积分说课课件 (1).ppt_第5页
资源描述:

《定积分说课课件 (1).ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《微积分》(高职经管类)§5.1定积分的概念说课人:杨德志说课部门:高教部高教部说教材教材前后联系、地位和作用在前面的课程中,我们通过学习导数,并利用导数研究函数的单调性、极值及经济活动中的优化问题等,渗透了微分思想.微分研究的是局部的、动态的和瞬时的事物,是发生在“0”时刻的事件;而数学家则希望借此来“以暂定久”、“以常制变”、“以局部驭整体”,这就需要用到定积分了!定积分的应用在高职经管类各专业课程中十分普遍。说教材教学目标Ⅰ、知识与技能目标:[1]通过探求曲边梯形的面积,使学生了解定积分的分割、近似代替、求和、取极限实际背景,了解“

2、分割、近似代替、求和、取极限”的思想方法,建构定积分的认知基础;[2]通过这部分内容的教学,逐步培养学生分析问题、解决问题的能力和辨证思维能力。[3]会求简单的曲边梯形的面积.说教材教学目标Ⅱ、过程与方法目标:[1]通过类比“割圆术”,引导学生萌发“分割”、“近似”、“以直代曲”的想法,变曲为直;[2]通过对比分割后图象面积差的变化特点,突出“细分割、近似和、渐逼近”的数学过程;[3]通过数学软件的演示,观察数据特征,让学生经历“刨光磨平”的逼近过程,从直观上理解极限思想,接受极限值即准确值的数学事实.说教材教学目标Ⅲ、情态与价值目标:[

3、1]从生产生活实践中创设情境引出课题,培养学生的创新意识和科技服务于生活的人文精神,鼓励同学们勤于思考、刻苦学习;[2]帮助学生建立“分割、近似、求和、取极限”的定积分思想,渗透“化整为零零积整”的辨证唯物观.说教材教学重点、难点了解定积分的基本思想方法(以直代曲、逼近的思想),初步掌握求曲边梯形面积的“四步曲”——“分割、近似、求和、取极限”.[1]掌握“以直代曲”“逼近”思想的形成过程,尤其是“刨光磨平”的极限过程;[2]求和符号∑.Ⅰ、教学重点:Ⅱ、教学难点:说教材学习方法1.发现法解决第一个案例观察分析探索猜测验证解决2.模仿法解

4、决第二个案例3.归纳法总结出概念4.练习法巩固加深理解教学方法以讲授为主:案例教学法(引入概念)问题驱动法(加深理解)练习法(巩固知识)直观性教学法(变抽象为具体)教学手段板书教学为主,多媒体课件为辅(化解难点、保证重点)定积分的概念案例1曲边梯形的面积(重点解决)案例2变速直线运动的路程(类比简单解决)探--究思---解归---结探---究思---解归---结定义总体设计教学过程设计说教学设想平面几何图形的面积说教学设想——复习引入矩形三角形圆平行四边形梯形正六边形思解阶段概念探索阶段启发探究引人入胜(8分钟)说教学设想如何求这些不规则

5、图形面积?思解阶段概念探索阶段启发探究引人入胜(8分钟)说教学设想问题:如何计算曲边梯形的面积呢?——问题简化abxyo引例1曲边梯形的面积思解阶段概念探索阶段启发探究引人入胜(8分钟)正六边形的周长正十二边形的周长正形的周长说教学设想“割圆术”是怎样操作的?对我们有何启示?所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。思解阶段概念探索阶段启发探究引人入胜(8分钟)说教学设想——问题简化引例1曲边梯形的面积思解阶段概念探索阶段启发探究引人入胜(8分钟)(1)能否直接求出面积的准确值?(2)用什么图形的面积来

6、代替曲边梯形的面积呢?三角形、矩形、梯形?(3)采用一个矩形的面积来近似与二个矩形的面积和来近似,一般来说哪个值更接近?二个矩形与三个相比呢?……提出几个问题(注意启发与探究)。(4)猜想:让学生大胆设想,使用什么方法,可使误差越来越小,直到为零?(5)论证:多媒体图像演示,直观形象模拟,让学生逐步观察到求出面积的方法.(6)教师讲解分析:“分割成块、近似代替、积累求和、无穷累加”的微积分思想方法。abxyoabxyo用矩形面积近似取代曲边梯形面积(四个小矩形)(九个小矩形)显然,小矩形越多,矩形总面积越接近曲边梯形面积.说教学设想思解阶

7、段概念探索阶段启发探究引人入胜(8分钟)归纳曲边梯形面积的方法(2)近似代替:任取xi[xi-1,xi],第i个小曲边梯形的面积用高为f(xi)而宽为Dx的小矩形面积f(xi)Dx近似之。(4)取极限:,所求曲边梯形的面积S为(3)求和:取n个小矩形面积的和作为曲边梯形面积S的近似值:xiy=f(x)xyObaxi+1xi(1)分割:在区间[a,b]上等间隔地插入n-1个点,将它分成n个小区间:每个小区间宽度引例2[汽车的行驶路程]行驶速度是变化的,如何得到它行驶的路程?说教学设想——类比方法具体计算步骤如下:(1)分割(2)近似代替(

8、3)求和(4)取极限titnt0ti+1xi说教学设想xOS=s(t)y归结阶段提炼概念阶段类比探究数学建模(7分钟)共同点:特殊的和式极限,并写出模型。方法:化整为零细划分,不变代变得微分,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。